scholarly journals Impact of different training methods to the maximum vertical jump height in junior basketball players

2012 ◽  
Vol 66 (1) ◽  
pp. 25-31 ◽  
Author(s):  
Aleksandar Kukric ◽  
Milivoje Karalejic ◽  
Sasa Jakovljevic ◽  
Borko Petrovic ◽  
Radivoj Mandic
2008 ◽  
Vol 17 (4) ◽  
pp. 358-371 ◽  
Author(s):  
Julie A. Siegmund ◽  
Kellie C. Huxel ◽  
C. Buz Swanik

Context:Determining whether there are compensations in those with jumper’s knee (JK) might further our understanding of the condition.Objective:Comparing lower extremity kinematics and jump performance of basketball athletes with JK with those of healthy controls (C).Design:Repeated-measures control-match design.Setting:University laboratory.Participants:24 male basketball players (12 JK, 12 C) matched by height, weight, position, experience, and frequency of play.Interventions:Standing countermovement and running layup jumps.Main Outcome Measures:Maximum vertical-jump height, footfall landing, and lower extremity sagittal-plane kinematics.Results:There were no significant group differences (P > .05) in vertical-jump height (JK = 64.3 ± 8.6 cm, C = 63.0 ± 9.8 cm) or layup height (JK = 71.3 ± 11.6 cm, C = 73.3 ± 11.0 cm). JK subjects landed flat footed (50%) more than controls (8%). JK subjects showed significantly more hip flexion (JK = 105° ± 24.8°, C = 89.8° ± 14.1°; P = .039) with decreased hip acceleration during the countermovement (JK = −3039 ± 1392°/s2, C = −4229 ± 1765°/s2; P = .040). When landing from the countermovement jump, JK subjects had significantly less knee acceleration (JK = −4960 ± 1512°/s2, C = −6736 ± 2009°/s2; P = 023) and in the layup showed significantly less ankle dorsiflexion (JK = 106.5° ± 9.0°, C = 112.5° ± 7.7°; P = .048) and hip acceleration (JK = − 2841 ± 1094°/s2, C = −3912 ± 1575°/s2; P = .033).Conclusion:Compensatory strategies observed in JK subjects might help maintain performance, because their jump height was similar to that of healthy controls.


2019 ◽  
Vol 5 (1) ◽  
pp. e000631 ◽  
Author(s):  
Kosuke Takeuchi ◽  
Fumiko Tsukuda

ObjectivesThe purpose of the present study was to compare the effects of static stretching (SS) on the range of motion and vertical jump height between the quadriceps, hamstrings and triceps surae in collegiate basketball players.MethodsFourteen male collegiate basketball players (20.2±0.7 years, 179.0±5.0 cm, 71.9±8.3 kg) underwent 5 min of SS for the quadriceps, hamstrings and triceps surae, in random order. Before and after each stretch, the range of motion (ROM) and vertical jump height were measured.ResultsROM of the quadriceps, hamstrings and triceps surae were increased without any difference of relative change in the range. The vertical jump height showed no change after SS of the quadriceps and hamstrings, while it decreased after SS of the triceps surae (p<0.05).ConclusionThese results suggested that SS for the triceps surae may have a large impact on jump performance.


2021 ◽  
pp. 1-8
Author(s):  
Junta Iguchi ◽  
Minoru Matsunami ◽  
Tatsuya Hojo ◽  
Yoshihiko Fujisawa ◽  
Kenji Kuzuhara ◽  
...  

BACKGROUND: Few studies have investigated the variations in body composition and performance in Japanese collegiate American-football players. OBJECTIVE: To clarify what characterizes competitors at the highest levels – in the top division or on the starting lineup – we compared players’ body compositions and performance test results. METHODS: This study included 172 players. Each player’s body composition and performance (one-repetition maximum bench press, one-repetition maximum back squat, and vertical jump height) were measured; power was estimated from vertical jump height and body weight. Players were compared according to status (starter vs. non-starter), position (skill vs. linemen), and division (1 vs. 2). Regression analysis was performed to determine characteristics for being a starter. RESULTS: Players in higher divisions and who were starters were stronger and had more power, greater body size, and better performance test results. Players in skill positions were relatively stronger than those in linemen positions. Vertical jump height was a significant predictor of being a starter in Division 1. CONCLUSION: Power and vertical jump may be a deciding factor for playing as a starter or in a higher division.


2020 ◽  
Vol 38 (13) ◽  
pp. 1475-1487 ◽  
Author(s):  
Rodrigo Ramirez-Campillo ◽  
Javier Sanchez-Sanchez ◽  
Blanca Romero-Moraleda ◽  
Javier Yanci ◽  
Antonio García-Hermoso ◽  
...  

2014 ◽  
Vol 20 (3) ◽  
pp. 303-309 ◽  
Author(s):  
Gleber Pereira ◽  
Paulo B. de Freitas ◽  
Jose A. Barela ◽  
Carlos Ugrinowitsch ◽  
André L. F. Rodacki ◽  
...  

The aim of this study was to describe the intersegmental coordination and segmental contribution during intermittent vertical jumps performed until fatigue. Seven male visited the laboratory on two occasions: 1) the maximum vertical jump height was determined followed by vertical jumps habituation; 2) participants performed intermittent countermovement jumps until fatigue. Kinematic and kinetic variables were recorded. The overall reduction in vertical jump height was 5,5%, while the movement duration increased 10% during the test. The thigh segment angle at movement reversal significantly increased as the exercise progressed. Non-significant effect of fatigue on movement synergy was found for the intersegmental coordination pattern. More than 90% of the intersegmental coordination was explained by one coordination pattern. Thigh rotation contributed the most to the intersegmental coordination pattern, with the trunk second and the shank the least. Therefore, one intersegmental coordination pattern is followed throughout the vertical jumps until fatigue and thigh rotation contributes the most to jump height.


Author(s):  
Matthew R. Maulit ◽  
David C. Archer ◽  
Whitney D. Leyva ◽  
Cameron N. Munger ◽  
Megan A. Wong ◽  
...  

Background: Recent research has compared explosive deadlift to kettlebell training observing their effects on strength. The kettlebell swing is a popular practical exercise as it shares share a hip hinge movement with the explosive deadlift, but the two have not been compared. Objectives: The purpose of this study was to compare the effects of kettlebell swing vs. explosive deadlift training on strength and power. Methods: Thirty-one recreationally resistance-trained men (age = 23.1 ± 2.3 years, height = 175.5 ± 6.6 cm, mass = 83.9 ± 13.8 kg, 1RM deadlift = 159.9 ± 31.7 kg) were randomly assigned to one of two groups [kettlebell swing group (KBG) n = 15, or explosive deadlift group (EDLG) n = 16]. Vertical jump height, isometric mid-thigh pull (MTP), and 1RM deadlift were measured pre and post training. Both groups trained twice per week for 4 weeks. Volume and load were increased after the first 2 weeks of training. Results: A 2 (time) x 2 (group) mixed factor ANOVA revealed a significant (P<0.05) increase in deadlift 1RM (pre: 159.9 ± 31.7 kg, post: 168.9 ± 31.8 kg) and vertical jump height (pre: 56.6 ± 9.9 cm, post: 57.9 ± 9.7 cm) for both groups, but were not significantly different between groups. There were no significant changes in MTP. Conclusions: Strength and conditioning professionals may use both kettlebell swings and explosive deadlifts to increase deadlift strength and vertical jump power.


Sign in / Sign up

Export Citation Format

Share Document