scholarly journals Extended application of hardness prediction system for temper bead welding of A533B steel to various low-alloy steels (continued from previous issue: Part 2)

2020 ◽  
Vol 65 (2) ◽  
pp. 91-95
Author(s):  
Lina Yu ◽  
Kazuyoshi Saida ◽  
Kazutoshi Nishimoto
2018 ◽  
Vol 941 ◽  
pp. 9-14
Author(s):  
Li Na Yu ◽  
Kazuyoshi Saida ◽  
Kazutoshi Nishimoto

Temper bead welding is one of effective repair welding methods in case that post weld heat treatment is not easily applied. In order to evaluate the effectiveness of temper bead welding, hardness in HAZ becomes important factor. The neural network-based hardness prediction system of HAZ in temper bead welding for A533B low-alloy steel has been constructed by the authors in the previous study. However, for HAZ hardness prediction of other steels, it is necessary to obtain hardness database for each steel which is time-cost consuming, if the same method is used. The present study has been conducted to develop the generalized hardness prediction method applicable for other steels by utilizing the hardness data-base of A533B steel assuming that the hardness in HAZ of steels after tempering have a linear relationship with LMP (Larson-Miller parameter). On using the newly proposed extended method, only a few hardness data-base for the other steels is needed to obtain. Hardness distribution in HAZ of temper bead welding for other steels was calculated by using the extended hardness prediction system. The thermal cycles used for calculation were numerically obtained by a finite element method. The experimental results have shown that the predicted hardness is in good accordance with the measured one for steels without secondary hardening. It follows that the currently proposed extended method is effective for estimating the tempering effect during temper bead welding for the steels without secondary hardening.


Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


2020 ◽  
Vol 2020 (10) ◽  
pp. 8-21
Author(s):  
A. G. Kolmakov ◽  
◽  
I. O. Bannykh ◽  
V. I. Antipov ◽  
L. V. Vinogradov ◽  
...  

he basic ideas about the process of introducing cores into protective barriers and the most common core patterns and their location in conventional and sub-caliber small arms bullets are discussed. The materials used for manufacture of cores are analyzed. It is concluded that for mass bullets of increased armor penetration the most rational choice can be considered the use of high-carbon low-alloy steels of a new generation with a natural composite structure and hardness of up to 70 HRC. For specialized armor-piercing bullets, cores made from promising economically-alloyed high-speed steels characterized by a high complex of «hardness—bending strength» are better alternative than ones made of hard alloys or tungsten alloys.


Alloy Digest ◽  
1978 ◽  
Vol 27 (1) ◽  

Abstract UNIFLUX VCM 125 is a continuous flux-cored welding electrode (wire) that is used to deposit 1 1/4% chromium-1/2% molybdenum steel for which it was developed. Welding is protected by a shielding atmosphere of 100% carbon dioxide. This electrode also may be used to weld other low-alloy steels and carbon steels; however, the weld metal may differ somewhat from 1 1/4% chromium-1/2% molybdenum because of weld-metal dilution. When Uniflux VCM 125 is used to weld 1 1/4% chromium-1/2% molybdenum steel, it provides 95,000 psi tensile strength at 70 F and 24 foot-pounds Charpy V-notch impact at 40 F. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SA-340. Producer or source: Unicore Inc., United Nuclear Corporation.


Alloy Digest ◽  
1979 ◽  
Vol 28 (2) ◽  

Abstract UNIFLUX V90 is a continuous flux-cored welding electrode (wire) developed to weld high-strength low-alloy steels, but it may be used to weld other low-alloy steels and carbon steels. It is used to deposit typically 2.40% nickel steel weld metal with good low-temperature impact properties. Welding is protected by a shielding atmosphere of either 75% argon-25% carbon dioxide or 100% carbon dioxide. Uniflux V90 is used widely in shipbuilding and other fabricating industries. It provides around 88,000 psi tensile strength and around 26 food-pounds Charpy V-notch impact at 60 F. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SA-355. Producer or source: Unicore Inc., United Nuclear Corporation.


Alloy Digest ◽  
1983 ◽  
Vol 32 (8) ◽  

Abstract TRI-MARK TM-115 is a gas-shielded flux-cored welding electrode for continuous high deposition are welding. It is designed specifically for semiautomatic and automatic arc welding of high-strength low-alloy steels and quenched-and-tempered steels. This gas-sheilded tubular wire can be used for single and multiple-pass welding. It has outstanding low-temperature impact properties. Its applications including mining equipment, large vehicles and similar items. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SA-392. Producer or source: Tri-Mark Inc..


Sign in / Sign up

Export Citation Format

Share Document