scholarly journals Mechanistic Basis for Plant Responses to Drought Stress: Regulatory Mechanism of Abscisic Acid Signaling

2011 ◽  
Vol 53 (3) ◽  
pp. 178-185
Author(s):  
Takuya MIYAKAWA ◽  
Masaru TANOKURA
Plant Science ◽  
2021 ◽  
Vol 304 ◽  
pp. 110804
Author(s):  
Yudong Liu ◽  
Ling Wen ◽  
Yuan Shi ◽  
Deding Su ◽  
Wang Lu ◽  
...  

2014 ◽  
Vol 164 (4) ◽  
pp. 1677-1696 ◽  
Author(s):  
Christiane Seiler ◽  
Vokkaliga T. Harshavardhan ◽  
Palakolanu S. Reddy ◽  
Götz Hensel ◽  
Jochen Kumlehn ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0163082 ◽  
Author(s):  
Dongyun Ma ◽  
Huina Ding ◽  
Chenyang Wang ◽  
Haixia Qin ◽  
Qiaoxia Han ◽  
...  

2007 ◽  
Vol 132 (1) ◽  
pp. 60-66 ◽  
Author(s):  
Michelle DaCosta ◽  
Bingru Huang

Abscisic acid (ABA) and cytokinins are two groups of plant hormones that play important roles in regulating plant responses to decreases in soil water availability. The primary objective for this study was to determine whether species variability in drought survival and recovery for colonial bentgrass (Agrostis capillaris L.), creeping bentgrass (A. stolonifera L.), and velvet bentgrass (A. canina L.) were related to changes in ABA and cytokinin content. Plants of ‘Tiger II’ colonial bentgrass, ‘L-93’ creeping bentgrass, and ‘Greenwich’ velvet bentgrass were subjected to two soil moisture treatments: 1) well-watered controls, irrigated three times per week; and 2) drought, irrigation completely withheld for 16 days. For recovery, previously drought-stressed plants were rewatered and irrigated three times per week to evaluate the recovery potential for each species. Drought stress resulted in significant declines in turf quality (TQ), shoot extension rates, canopy net photosynthetic rate (Pn), daily evapotranspiration rate (ET), and cytokinin content, and significant increases in ABA content for all three bentgrass species. Velvet bentgrass exhibited less severe drought injury, as exhibited by higher TQ, Pn, and daily ET rate compared with colonial bentgrass and creeping bentgrass. Velvet bentgrass also had significantly less ABA accumulation, which could allow for continued gas exchange and sustained plant survival during drought stress compared with colonial bentgrass and creeping bentgrass. Upon rewatering after drought stress, colonial bentgrass exhibited more rapid recovery in turfgrass growth and water use compared with creeping bentgrass and velvet bentgrass. The higher recuperative ability of colonial bentgrass could be associated with its more rapid decline in ABA content and increases in cytokinin content compared with creeping bentgrass and velvet bentgrass.


Plant Science ◽  
2021 ◽  
pp. 111022
Author(s):  
Bingxin Wang ◽  
Liqun Li ◽  
De Peng ◽  
Mingliu Liu ◽  
Aosong Wei ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhen Lin ◽  
Yuan Li ◽  
Yubei Wang ◽  
Xiaolei Liu ◽  
Liang Ma ◽  
...  

AbstractThe phytohormone abscisic acid (ABA) is crucial for plant responses to environmental challenges. The SNF1-regulated protein kinase 2s (SnRK2s) are key components in ABA-receptor coupled core signaling, and are rapidly phosphorylated and activated by ABA. Recent studies have suggested that Raf-like protein kinases (RAFs) participate in ABA-triggered SnRK2 activation. In vitro kinase assays also suggest the existence of autophosphorylation of SnRK2s. Thus, how SnRK2 kinases are quickly activated during ABA signaling still needs to be clarified. Here, we show that both B2 and B3 RAFs directly phosphorylate SnRK2.6 in the kinase activation loop. This transphosphorylation by RAFs is essential for SnRK2 activation. The activated SnRK2s then intermolecularly trans-phosphorylate other SnRK2s that are not yet activated to amplify the response. High-order Arabidopsis mutants lacking multiple B2 and B3 RAFs show ABA hyposensitivity. Our findings reveal a unique initiation and amplification mechanism of SnRK2 activation in ABA signaling in higher plants.


2015 ◽  
Vol 67 (3) ◽  
pp. 681-693 ◽  
Author(s):  
Huijuan Guo ◽  
Yucheng Sun ◽  
Xinhong Peng ◽  
Qinyang Wang ◽  
Marvin Harris ◽  
...  

Author(s):  
Chuankai Zhao ◽  
Diwakar Shukla

Phytohormone abscisic acid (ABA) is essential for plant responses to biotic and abiotic stresses. Dimeric receptors are a class of ABA receptors that are important for various ABA responses. While...


Sign in / Sign up

Export Citation Format

Share Document