Modeling Bubble Entrainment and Transport for Ship Wakes: Progress Using Hybrid RANS/LES Methods

Author(s):  
Jiajia Li ◽  
Ben Yuan ◽  
Pablo M. Carrica

This article presents progress on modeling bubble entrainment and transport around ships using hybrid Reynolds-averaged Navier–Stokes/large eddy simulation (RANS/LES) methods. Previous results using a Boltzmann-based polydisperse bubbly flow model show that LES perform better than RANS in predicting transport of bubbles to depth, a very important process to predict bubbly wakes. However, standard DES-type models fail to predict proper turbulent kinetic energy (TKE) and dissipation, needed by bubble entrainment, breakup, and coalescence models. We propose different approaches to obtain TKE and dissipation in LES regions and evaluate them for cases of increasing complexity, including decay of isotropic turbulence, a flat plate boundary layer, and the flow in the wake of the research vessel Athena. An exponential weighted average is used to estimate statistics and obtain the averaged quantities in regions with resolved turbulence. The TKE is satisfactorily predicted in the cases tested. A modified #x03C9; equation in the SST model is proposed to implicitly compute the dissipation, showing superior results than the standard DES models, although further improvements are necessary. A hybrid RANS/LES approach is proposed, which focused at conserving total TKE as the flow crosses RANS/LES interfaces, as previously performed for zonal approaches but attempting a DES-like detection of regions suitable for LES, critical for large-scale computations of bubbly flows involving complex geometries. A general form of a dynamic forcing term is derived to transfer the modeled TKE to resolved TKE with a controller to guarantee proper conservation of the energy transferred. It was verified that the model is not sensitive to grid size or time step. Improvements to DDES and the proposed TKE-conserving hybrid RANS/LES method show encouraging results, although remaining challenges are discussed.

2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Yangwei Liu ◽  
Luyang Zhong ◽  
Lipeng Lu

Tip leakage vortex (TLV) has a large impact on compressor performance and should be accurately predicted by computational fluid dynamics (CFD) methods. New approaches of turbulence modeling, such as delayed detached eddy simulation (DDES), have been proposed, the computational resources of which can be reduced much more than for large eddy simulation (LES). In this paper, the numerical simulations of the rotor in a low-speed large-scale axial compressor based on DDES and unsteady Reynolds-averaged Navier–Stokes (URANS) are performed, thus improving our understanding of the TLV dynamic mechanisms and discrepancy of these two methods. We compared the influence of different time steps in the URANS simulation. The widely used large time-step makes the unsteadiness extremely weak. The small time-step shows a better result close to DDES. The time-step scale is related to the URANS unsteadiness and should be carefully selected. In the time-averaged flow, the TLV in DDES dissipates faster, which has a more similar structure to the experiment. Then, the time-averaged and instantaneous results are compared to divide the TLV into three parts. URANS cannot give the loss of stability and evolution details of TLV. The fluctuation velocity spectra show that the amplitude of high frequencies becomes obvious downstream from the TLV, where it becomes unstable. Last, the anisotropy of the Reynolds stress of these two methods is analyzed through the Lumley triangle to see the distinction between the methods and obtain the Reynolds stress. The results indicate that the TLV latter part in DDES is anisotropic, while in URANS it is isotropic.


2014 ◽  
Vol 7 (10) ◽  
pp. 3549-3563 ◽  
Author(s):  
Y. Liberman ◽  
R. Samuels ◽  
P. Alpert ◽  
H. Messer

Abstract. One of the main challenges for meteorological and hydrological modelling is accurate rainfall measurement and mapping across time and space. To date, the most effective methods for large-scale rainfall estimates are radar, satellites, and, more recently, received signal level (RSL) measurements derived from commercial microwave networks (CMNs). While these methods provide improved spatial resolution over traditional rain gauges, they have their limitations as well. For example, wireless CMNs, which are comprised of microwave links (ML), are dependant upon existing infrastructure and the ML' arbitrary distribution in space. Radar, on the other hand, is known in its limitation for accurately estimating rainfall in urban regions, clutter areas and distant locations. In this paper the pros and cons of the radar and ML methods are considered in order to develop a new algorithm for improving rainfall measurement and mapping, which is based on data fusion of the different sources. The integration is based on an optimal weighted average of the two data sets, taking into account location, number of links, rainfall intensity and time step. Our results indicate that, by using the proposed new method, we not only generate more accurate 2-D rainfall reconstructions, compared with actual rain intensities in space, but also the reconstructed maps are extended to the maximum coverage area. By inspecting three significant rain events, we show that our method outperforms CMNs or the radar alone in rain rate estimation, almost uniformly, both for instantaneous spatial measurements, as well as in calculating total accumulated rainfall. These new improved 2-D rainfall maps, as well as the accurate rainfall measurements over large areas at sub-hourly timescales, will allow for improved understanding, initialization, and calibration of hydrological and meteorological models mainly necessary for water resource management and planning.


Author(s):  
G Cavazzini ◽  
G Pavesi ◽  
G Ardizzon

This article reports the acoustic and fluid-dynamical analyses of large-scale instabilities in a vaned centrifugal pump. The unsteady pressure fields at full/part load were measured by dynamic piezoresistive transducers placed at the impeller discharge and on an instrumented diffuser vane. To spectrally characterize the inception and the evolution of the unsteady phenomena, spectral analyses of the pressure signals were carried out both in frequency and time–frequency domains. Numerical analyses were carried out on the same pump with the help of the commercial code CFX. All the computations were performed using the unsteady ‘transient’ model with a time step corresponding to about 1° of the impeller rotation. The turbulence was modelled by the detached eddy simulation model. Numerical pressure signals were compared with the experimental ones to verify the development of the same pressure instabilities. The unsteady numerical flow fields were analysed to study the fluid-dynamical evolution of the instabilities and investigate their origin.


2014 ◽  
Vol 7 (5) ◽  
pp. 4481-4528 ◽  
Author(s):  
Y. Liberman ◽  
R. Samuels ◽  
P. Alpert ◽  
H. Messer

Abstract. One of the main challenges for meteorological and hydrological modelling is accurate rainfall measurement and mapping across time and space. To date the most effective methods for large scale rainfall estimates are radar, satellites, and more recently, received signal level (RSL) measurements received from commercial microwave networks (CMN). While these methods provide improved spatial resolution over traditional rain gauges, these have their limitations as well. For example, the wireless CMN, which are comprised of microwave links (ML), are dependant upon existing infrastructure, and the ML arbitrary distribution in space. Radar, on the other hand, is known in its limitation in accurately estimating rainfall in urban regions, clutter areas and distant locations. In this paper the pros and cons of the radar and ML methods are considered in order to develop a new algorithm for improving rain fall measurement and mapping, which is based on data fusion of the different sources. The integration is based on an optimal weighted average of the two data sets, taking into account location, number of links, rainfall intensity and time step. Our results indicate that by using the proposed new method we not only generate a more accurate 2-D rainfall reconstructions, compared with actual rain intensities in space, but also the reconstructed maps are extended to the maximum coverage area. By inspecting three significant rain events, we show an improvement of rain rate estimation over CMN or radar alone, almost uniformly, both for instantaneous spatial measurements, as well as in calculating total accumulated rainfall. These new improved 2-D rainfall maps, and the accurate rainfall measurements over large areas at sub-hourly time scales, will allow for improved understanding, initialization and calibration of hydrological and meteorological models necessary, mainly, for water resource management and planning.


2008 ◽  
Vol 614 ◽  
pp. 207-252 ◽  
Author(s):  
M. BINI ◽  
W. P. JONES

A large-eddy-based methodology for the simulation of turbulent sprays is discussed. The transport equations for the spatially filtered gas phase variables, in which source terms accounting for the droplet effects are added, are solved together with a probabilistic description of the liquid phase. The probabilistic approach for the liquid phase is based on the transport equation for the spatially filtered joint probability density function of the variables required in order to describe the state of the liquid phase. In this equation, unclosed terms representing the filtered Lagrangian rates of change of the variables describing the spray are present. General modelling ideas for subgrid-scale (SGS) effects are proposed. The capabilities of the approach and the validity of the closure models, with particular with respect to the SGS dispersion, are investigated through application to a dilute particle-laden turbulent mixing layer. It is demonstrated that the formulation is able to reproduce very closely the measured properties of both the continuous and dispersed phases. The large-eddy simulation (LES) results are also found to be entirely consistent with the experimentally observed characteristics of droplet–gas turbulence interactions. Consistent with direct numerical simulation (DNS) studies of isotropic turbulence laden with particles where the entire turbulence spectrum is found to be modulated by the presence of particles, the present investigation, which comprises the effects of particle transport upon the large-scale vortical structures of a turbulent shear flow, highlights what appears to be a selective behaviour; few large-scale frequencies gain energy whereas the remaining modes are damped.


1990 ◽  
Vol 43 (5S) ◽  
pp. S214-218 ◽  
Author(s):  
R. J. Adrian

The problem of relating the resolved scale motions in a large eddy simulation to the non-resolved sub-grid scale motions is considered from the view point of stochastic estimation. Algorithms governing the large scale field are derived by requiring minimum mean square prediction error at each time step. Possible forms for quasi-homogeneous regions such as Smagorinski’s model are analyzed.


2018 ◽  
Vol 852 ◽  
pp. 641-662 ◽  
Author(s):  
M. F. Howland ◽  
X. I. A. Yang

In a turbulent flow, small- and large-scale fluid motions are coupled. In this work, we investigate the small-scale response to large-scale fluctuations in turbulent flows and discuss the implications on large eddy simulation (LES) wall modelling. The interscale interaction in wall-bounded flows was previously parameterized in the predictive inner–outer (PIO) model, where the amplitude of the small scales responds linearly to the large-scale fluctuations. While this assumed linearity is valid in the viscous sublayer, it is an insufficient approximation of the true interscale interaction in wall-normal distances within the buffer layer and above. Within these regions, a piecewise linear response function (piecewise with respect to large-scale fluctuations being positive or negative) appears to be more appropriate. In addition to proposing a new response function, we relate the amplitude modulation process to the Townsend attached eddy hypothesis. This connection allows us to make theoretical predictions on the model parameters within the PIO model. We use these parameters to apply the PIO model to wall-modelled LES. Further, we present empirical evidence of amplitude modulation in isotropic turbulence. The evidence suggests that the existence of nonlinear interscale interactions in the form of amplitude modulation does not rely on the presence of a non-penetrating boundary, but on the presence of a range of viscosity-dominated scales and a range of inertial-dominated scales.


2021 ◽  
Vol 149 ◽  
Author(s):  
Jincheng Wei ◽  
Shurui Guo ◽  
Enshen Long ◽  
Li Zhang ◽  
Bizhen Shu ◽  
...  

Abstract The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) is highly contagious, and the coronavirus disease 2019 (COVID-19) pandemic caused by it has forced many countries to adopt ‘lockdown’ measures to prevent the spread of the epidemic through social isolation of citizens. Some countries proposed universal mask wearing as a protection measure of public health to strengthen national prevention efforts and to limit the wider spread of the epidemic. In order to reveal the epidemic prevention efficacy of masks, this paper systematically evaluates the experimental studies of various masks and filter materials, summarises the general characteristics of the filtration efficiency of isolation masks with particle size, and reveals the actual efficacy of masks by combining the volume distribution characteristics of human exhaled droplets with different particle sizes and the SARS-CoV-2 virus load of nasopharynx and throat swabs from patients. The existing measured data show that the filtration efficiency of all kinds of masks for large particles and extra-large droplets is close to 100%. From the perspective of filtering the total number of pathogens discharged in the environment and protecting vulnerable individuals from breathing live viruses, the mask has a higher protective effect. If considering the weighted average filtration efficiency with different particle sizes, the filtration efficiencies of the N95 mask and the ordinary mask are 99.4% and 98.5%, respectively. The mask can avoid releasing active viruses to the environment from the source of infection, thus maximising the protection of vulnerable individuals by reducing the probability of inhaling a virus. Therefore, if the whole society strictly implements the policy of publicly wearing masks, the risk of large-scale spread of the epidemic can be greatly reduced. Compared with the overall cost of social isolation, limited personal freedoms and forced suspension of economic activities, the inconvenience for citizens caused by wearing masks is perfectly acceptable.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4886 ◽  
Author(s):  
Yang Yang ◽  
Xiao Liu ◽  
Zhihao Zhang

The current work is focused on investigating the potential of data-driven post-processing techniques, including proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) for flame dynamics. Large-eddy simulation (LES) of a V-gutter premixed flame was performed with two Reynolds numbers. The flame transfer function (FTF) was calculated. The POD and DMD were used for the analysis of the flame structures, wake shedding frequency, etc. The results acquired by different methods were also compared. The FTF results indicate that the flames have proportional, inertial, and delay components. The POD method could capture the shedding wake motion and shear layer motion. The excited DMD modes corresponded to the shear layer flames’ swing and convect motions in certain directions. Both POD and DMD could help to identify the wake shedding frequency. However, this large-scale flame oscillation is not presented in the FTF results. The negative growth rates of the decomposed mode confirm that the shear layer stabilized flame was more stable than the flame possessing a wake instability. The corresponding combustor design could be guided by the above results.


Author(s):  
Wei Ma ◽  
Feng Gao ◽  
Xavier Ottavy ◽  
Lipeng Lu ◽  
A. J. Wang

Recently bimodal phenomenon in corner separation has been found by Ma et al. (Experiments in Fluids, 2013, doi:10.1007/s00348-013-1546-y). Through detailed and accurate experimental results of the velocity flow field in a linear compressor cascade, they discovered two aperiodic modes exist in the corner separation of the compressor cascade. This phenomenon reflects the flow in corner separation is high intermittent, and large-scale coherent structures corresponding to two modes exist in the flow field of corner separation. However the generation mechanism of the bimodal phenomenon in corner separation is still unclear and thus needs to be studied further. In order to obtain instantaneous flow field with different unsteadiness and thus to analyse the mechanisms of bimodal phenomenon in corner separation, in this paper detached-eddy simulation (DES) is used to simulate the flow field in the linear compressor cascade where bimodal phenomenon has been found in previous experiment. DES in this paper successfully captures the bimodal phenomenon in the linear compressor cascade found in experiment, including the locations of bimodal points and the development of bimodal points along a line that normal to the blade suction side. We infer that the bimodal phenomenon in the corner separation is induced by the strong interaction between the following two facts. The first is the unsteady upstream flow nearby the leading edge whose angle and magnitude fluctuate simultaneously and significantly. The second is the high unsteady separation in the corner region.


Sign in / Sign up

Export Citation Format

Share Document