Post-Buckling Behavior of Pressurized Long Circular Cylindrical Shells

1986 ◽  
Vol 30 (03) ◽  
pp. 172-176
Author(s):  
Charles W. Bert ◽  
Victor Birman

The problem of post-buckling behavior of long, vertical, circular cylindrical shells loaded by nonuniform pressure, tension, and their own weight is formulated in this paper. The global behavior is considered by assuming that local deformations do not influence the solution. The nonlinear effect is due to the softening of the relationship between the bending moment and curvature due to the effect of the flattening of the shell cross sections. The nonlinear differential equation obtained in this paper describes the post-buckling behavior of a shell with linearly distributed pressure along the axis and arbitrary boundary conditions. In the general case this problem must be solved numerically. An analytical solution is presented for a particular case of a shell loaded by a uniform external or internal pressure.

1983 ◽  
Vol 11 (1) ◽  
pp. 3-19
Author(s):  
T. Akasaka ◽  
S. Yamazaki ◽  
K. Asano

Abstract The buckled wave length and the critical in-plane bending moment of laminated long composite strips of cord-reinforced rubber sheets on an elastic foundation is analyzed by Galerkin's method, with consideration of interlaminar shear deformation. An approximate formula for the wave length is given in terms of cord angle, elastic moduli of the constituent rubber and steel cord, and several structural dimensions. The calculated wave length for a 165SR13 automobile tire with steel breakers (belts) was very close to experimental results. An additional study was then conducted on the post-buckling behavior of a laminated biased composite beam on an elastic foundation. This beam is subjected to axial compression. The calculated relationship between the buckled wave rise and the compressive membrane force also agreed well with experimental results.


2012 ◽  
Vol 28 (1) ◽  
pp. 97-106 ◽  
Author(s):  
J. D. Yau ◽  
S.-R. Kuo

ABSTRACTUsing conventional virtual work method to derive geometric stiffness of a thin-walled beam element, researchers usually have to deal with nonlinear strains with high order terms and the induced moments caused by cross sectional stress results under rotations. To simplify the laborious procedure, this study decomposes an I-beam element into three narrow beam components in conjunction with geometrical hypothesis of rigid cross section. Then let us adopt Yanget al.'s simplified geometric stiffness matrix [kg]12×12of a rigid beam element as the basis of geometric stiffness of a narrow beam element. Finally, we can use rigid beam assemblage and stiffness transformation procedure to derivate the geometric stiffness matrix [kg]14×14of an I-beam element, in which two nodal warping deformations are included. From the derived [kg]14×14matrix, it can take into account the nature of various rotational moments, such as semi-tangential (ST) property for St. Venant torque and quasi-tangential (QT) property for both bending moment and warping torque. The applicability of the proposed [kg]14×14matrix to buckling problem and geometric nonlinear analysis of loaded I-shaped beam structures will be verified and compared with the results presented in existing literatures. Moreover, the post-buckling behavior of a centrally-load web-tapered I-beam with warping restraints will be investigated as well.


Author(s):  
Hitoshi Asahi ◽  
Eiji Tsuru

Application of strain based design to pipelines in arctic or seismic areas has recently been recognized as important. So far, there has been much study performed on tensile strain limit and compressive strain limit. However, the relationship between bending buckling (compressive strain limit) and tensile strain limit has not been discussed. A model using actual stress strain curves suggests that the tensile strain limit increases as Y/T rises under uniaxial tensile stress because a pipe manufacturer usually raises TS instead of lowering YS to achieve low Y/T. Under bending of a pipe with a high D/t, an increase in compressive strain on intrados of a bent pipe at the maximum bending moment (ε-cp*) improves the tensile strain limit because the tensile strain limit is controlled by the onset of buckling or ε-cp* which is increased by lowering Y/T. On the other hand, under bending of a pipe with a low D/t, the tensile strain limit may not be influenced by improvement of buckling behavior because tensile strain on the extrados is already larger than the tensile limit at ε-cp*. Finally, we argue that the balance of major linepipe properties is important. Efforts other than the strict demands for pipe properties are also very important and inevitable to improve the strain capacity of a pipeline.


2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Dong Tang ◽  
Guoxun Wu ◽  
Xiongliang Yao ◽  
Chuanlong Wang

An analytical procedure for free vibration analysis of circular cylindrical shells with arbitrary boundary conditions is developed with the employment of the method of reverberation-ray matrix. Based on the Flügge thin shell theory, the equations of motion are solved and exact solutions of the traveling wave form along the axial direction and the standing wave form along the circumferential direction are obtained. With such a unidirectional traveling wave form solution, the method of reverberation-ray matrix is introduced to derive a unified and compact form of equation for natural frequencies of circular cylindrical shells with arbitrary boundary conditions. The exact frequency parameters obtained in this paper are validated by comparing with those given by other researchers. The effects of the elastic restraints on the frequency parameters are examined in detail and some novel and useful conclusions are achieved.


1966 ◽  
Vol 70 (672) ◽  
pp. 1095-1097 ◽  
Author(s):  
D. J. Johns

The linear buckling of circular cylindrical shells is considered with particular attention to the cantilever shell subjected to either a pure bending moment (M) or transverse load (P)—see Fig. 1. It is believed that the conclusions reached have wider application to more general loading cases.


Sign in / Sign up

Export Citation Format

Share Document