Optimization of Trimaran Design Configuration in Calm and Deep Water

Author(s):  
Renato Skejic ◽  
Sverre A. Alterskjær

The field of sea based modern shipping activities is constantly seeking for its improvements to achieve the economically justified operational patterns. In the same time, the sea transportation activities also need to satisfy currently imposed and, as well as, upcoming in the near future, safety and ecologically friendly footprint characteristics when it comes to the emission of greenhouse gasses and hard particles [1]. Fulfilment of the stated requirements consequently asks for the determination of certain vessels operational parameters such as the total resistance of a vessel which estimation is frequently carried out for predefined calm and deep-water environmental scenario. Current work is dealing with investigation of the total resistance parameter in calm and deep water for the preselected types of the trimaran ship hull configurations. The total resistance is estimated according to [2] recommended procedure through applicability of the robust and reliable method which is capable to address the problem of wave resistance prediction in calm and deep water. The method has origin in ordinary and modified Michell thin – ship wave theory by considering the viscous effects [3]. The differences between the utilized theories are discussed from the qualitative and quantitative point of view of the obtained results in comparison to the open source available theoretical experimental data and from the perspective of common engineering practice. Finally, based on the above description, the performed total resistance studies are used as a base for formulation of the optimization procedure which may be used in the trimaran vessel preliminary designs in the range of the forward speeds commonly expected during the normal operational life of the investigated trimaran vessel.

Author(s):  
Olga Leptiukhova ◽  
Marija Utkina

For more than half a century bicycle transport demonstrates its effectiveness as one of the elements of the transport network of the city. Currently, vehicles with low-power motors such as electric bicycle, electric scooter, gyrometer, segway, wheelbarrow, scooter motor and others are gaining people's attention. These vehicles can be combined into a group of low-speed individual vehicles (hereinafter - NITS) with similar re-quirements for the operational parameters of urban infrastructure. From the urban point of view, the interest in NITC is that the number of its users has increased significantly in recent years. The article presents the results of a sociological survey of residents of Serpukhov, allowing to assess the current and potential readi-ness of the population to use NITC. The growing popularity of NITC has led to an increase in the environmen-tal and economic effect, which is manifested at a particular level of development of the movement on NITC. The ecological and economic effect of the use of NITC has an extremely positive impact on the improvement of the urban environment. This article provides a list of indicators that reflect the growth in the standards of living of society from movement by the NITC, and the calculation of one of them - the increase in entrepre-neurial activity on the streets with increased traffic to the NITC. Indicators are necessary for calculation of complex criterion of efficiency and safety of street network due to development of the movement by NITC. The result will allow public authorities authorized to make decisions on the strategy of transport policy of cities to quantify the ratio of economic benefits from the development of infrastructure of the NITC with the cost of its construction and operation.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2753
Author(s):  
Miroslaw Zukowski ◽  
Walery Jezierski

According to the authors of this paper, the mathematical point of view allows us to see what sometimes cannot be seen from the designer’s point of view. The aim of this study was to estimate the influence of the most important parameters (volume of heat storage tanks, daily consumption of domestic hot water, optical efficiency, heat loss coefficient, and total area of a solar collector) on the thermal power output of solar domestic hot water (SDHW) system in European climatic conditions. Three deterministic mathematical models of these relationships for Madrid, Budapest, and Helsinki were created. The database for the development of these models was carried out using computer simulations made in the TRNSYS software environment. The SDHW system located at the Bialystok University of Technology (Poland) was the source of the measurement results used to validate the simulation model. The mathematical optimization procedure showed that the maximum annual useful energy output that can be obtained from 1 m2 of gross collector area is 1303 kWh in the case of Madrid, 918.5 kWh for Budapest, and 768 kWh for Helsinki weather conditions.


Author(s):  
Stefan Daum ◽  
Martin Greve ◽  
Renato Skejic

The present study is focused on performance issues of underwater vehicles near the free surface and gives insight into the analysis of a speed loss in regular deep water waves. Predictions of the speed loss are based on the evaluation of the total resistance and effective power in calm water and preselected regular wave fields w.r.t. the non-dimensional wave to body length ratio. It has been assumed that the water is sufficiently deep and that the vehicle is operating in a range of small to moderate Froude numbers by moving forward on a straight-line course with a defined encounter angle of incident regular waves. A modified version of the Doctors & Days [1] method as presented in Skejic and Jullumstrø [2] is used for the determination of the total resistance and consequently the effective power. In particular, the wave-making resistance is estimated by using different approaches covering simplified methods, i.e. Michell’s thin ship theory with the inclusion of viscosity effects Tuck [3] and Lazauskas [4] as well as boundary element methods, i.e. 3D Rankine source calculations according to Hess and Smith [5]. These methods are based on the linear potential fluid flow and are compared to fully viscous finite volume methods for selected geometries. The wave resistance models are verified and validated by published data of a prolate spheroid and one appropriate axisymmetric submarine model. Added resistance in regular deep water waves is obtained through evaluation of the surge mean second-order wave load. For this purpose, two different theoretical models based on potential flow theory are used: Loukakis and Sclavounos [6] and Salvesen et. al. [7]. The considered theories cover the whole range of important wavelengths for an underwater vehicle advancing in close proximity to the free surface. Comparisons between the outlined wave load theories and available theoretical and experimental data were carried out for a submerged submarine and a horizontal cylinder. Finally, the effective power and speed loss are discussed from a submarine operational point of view where the mentioned parameters directly influence mission requirements in a seaway. All presented results are carried out from the perspective of accuracy and efficiency within common engineering practice. By concluding current investigations in regular waves an outlook will be drawn to the application of advancing underwater vehicles in more realistic sea conditions.


1994 ◽  
Vol 31 (02) ◽  
pp. 149-160
Author(s):  
Donald C. Wyatt ◽  
Peter A. Chang

A numerically optimized bow design is developed to reduce the total resistance of a 23 000 ton ammunition ship (AE 36) at a speed of 22 knots. An optimization approach using slender-ship theory for the prediction of wave resistance is developed and applied. The new optimization procedure is an improvement over previous optimization methodologies in that it allows the use of nonlinear constraints which assure that the final design remains within practical limits from construction and operational perspectives. Analytic predictions indicate that the AE 36 optimized with this procedure will achieve a 40% reduction in wave resistance and a 33% reduction in total resistance at 22 knots relative to a Kracht elliptical bulb bow design. The optimization success is assessed by the analysis of 25th scale model resistance data collected at the David Taylor Research Center deepwater towing basin. The experimental data indicate that the optimized hull form yields a 51% reduction in wave resistance and a 12% reduction in total resistance for the vessel at 22 knots relative to the Kracht bulb bow design. Similarly encouraging results are also observed when comparisons are made with data collected on two other conventionally designed AE 36 designs.


2020 ◽  
Vol 20 (2) ◽  
pp. 26-38 ◽  
Author(s):  
M. Szala ◽  
M. Walczak ◽  
L. Łatka ◽  
K. Gancarczyk ◽  
D. Özkan

AbstractThe investigation into wear resistance is an up-to-date problem from the point of view of both scientific and engineering practice. In this study, HVOF coatings such as MCrAlY (CoNiCrAlY and NiCoCrAlY) and NiCrMo were deposited on AISI 310 (X15CrNi25-20) stainless steel substrates. The microstructural properties and surface morphology of the as-sprayed coatings were examined. Cavitation erosion tests were conducted using the vibratory method in accordance with the ASTM G32 standard. Sliding wear was examined with the use of a ball-on-disc tribometer, and friction coefficients were measured. The sliding and cavitation wear mechanisms were identified with the SEM-EDS method. In comparison to the NiCrMo coating, the MCrAlY coatings have lower wear resistance. The cavitation erosion resistance of the as-sprayed M(Co,Ni)CrAlY coatings is almost two times lower than that of the as-sprayed NiCrMoFeCo deposit. Moreover, the sliding wear resistance increases with increasing the nickel content as follows: CoNiCrAlY < NiCoCrAlY < NiCrMoFeCo. The mean friction coefficient of CoNiCrAlY coating equals of 0.873, which almost 50% exceed those reported for coating NiCrMoFeCo of 0.573. The as-sprayed NiCrMoFeCo coating presents superior sliding wear and cavitation erosion resistance to the as-sprayed MCrAlY (CoNiCrAlY and NiCoCrAlY) coatings.


Author(s):  
T. O’Neill ◽  
M. Denford ◽  
J. Leaney ◽  
K. Dunsire

Enterprise architecture (EA) is the recognised place where the engineering practice of systems architecture meets real-world enterprise needs. The enterprise computer-based systems employed by organisations today can be extremely complex. These systems are essential for undertaking business and general operations in the modern environment, and yet the ability of organisations to control their evolution is questionable. The emerging practice of enterprise architecture seeks to control that complexity through the use of a holistic and top-down perspective. However, the methodologies and toolsets already in use are very much bottom-up by nature. An architecture-based approach is herein proposed; one that has at its base a complete and formal architectural description (or model). This allows enterprise architects, strategists, and designers to confidently model, predict, and control the emergent properties of their respective systems from an architectural point of view. The authors conclude that by using an approach founded upon an architectural model to analyse software and enterprise systems, architects can guide the design and evolution of architectures based on quantifiable nonfunctional requirements. Furthermore, hierarchical 3D visualisation provides a meaningful and intuitive means for conceiving and communicating complex architectures.


Author(s):  
Daniel Sampaio da Silva ◽  
Si´lvio A. Melo Filho ◽  
Mauro Niehues de Farias ◽  
Anderson Pacheco

The OLAPA pipeline (Oleoduto Arauca´ria–Paranagua´) is a 12in diameter pipeline and, with its 97,6 km in length, crosses a mountain region called “Serra do Mar” attaining elevations of about 900m in a dense forest region. Besides that, this pipeline crosses cities, farms, rivers, including a short submerse stretch in the Paranagua´’s bay. An incident in this pipeline could result in severe consequences, especially under the environmental point of view. Therefore, this pipeline was chosen to test the performance of a new leak detector system in Transpetro. The test consists in comparing the theoretical results with practical values of alarm times obtained from a controlled removal of product in an adequate point, in the middle of the pipeline, simulating a real leak. The system chosen to be tested was the LeakWarn system, which is a computational system that uses the mass balance principle with line pack change to analyze the pipeline operational parameters in order to alert when there is a risk of product leak. This test had the objective to evaluate the LDS and help Transpetro’s management team to analyze and decide whether or not to replace its current leak management system, since this new one showed the expected results and was compatible with the excellence level already achieved in the company. The field test was performed in July 7th 2009, through a vent valve far from the ends of the pipeline and it was made in three different conditions: 1) A big leak in the steady state of operation; 2) A small leak also in the steady state of operation; and 3) A big leak in the transient state of operation (immediately after the pump station start up). In order to proceed this test, a multidisciplinary team was assigned and several resources were used such as: Two tank trucks, a specially designed leakage line with control valves, measuring system, flexible hoses, communication systems and emergency equipments. The complete operation was monitored from the Control Center in Transpetro’s Headquarter, Rio de Janeiro. This paper describes the way the tests were performed and presents the results in order to contribute with useful information to be used in any field test for any other leak detection system. It shows how planning were done in order to insure that all operations would be performed according to strict procedures and in a safe way. It also describes the milestones and the work of each team involved in the activity, as well as their constraints and difficulties that had to be overcome during the planning and execution phases, that lasted approximately one year.


2019 ◽  
Vol 6 (2) ◽  
pp. 59-70
Author(s):  
Hana Posavčić ◽  
Ivan Halkijević ◽  
Živko Vuković

Water conditioning is a method of removing altering minerals, chemicals and contaminants from a water source and it is carried out on facilities equipped with the corresponding electro-mechanical equipment. Although efficient, conventional processes typically use several complex devices connected to a single functional unit, which are often expensive to maintain and occupy large areas. Therefore, the aim of this paper is to present the electrocoagulation (EC) method as an alternative to conventional water conditioning processes. The examples of previous studies of the EC process application is presented in this paper. The focus of the paper is to investigate the influence of the certain operational parameters such as pH, temperature, electrode material, etc., on the efficiency of pollutant removal such as Escherichia coli and elevated concentrations of iron, arsenic, manganese, ammonia and others. Further, an economic analysis is made, which, from an economic point of view, shows when it is feasible to use the EC in the conditioning process. Furthermore, a case study of electrocoagulation process for Total Nitrogen (TN) removal is presented. According to results, 69.7 % of TN was removed with aluminum electrodes after 240 minutes. For this case, total operating costs were 7.60 €/m3.


Author(s):  
Konstantinos Chatziioannou ◽  
Vanessa Katsardi ◽  
Apostolos Koukouselis ◽  
Euripidis Mistakidis

The purpose of this work is to highlight the importance of considering the actual nonlinear dynamic response for the analysis and design of fixed deep water platforms. The paper highlights the necessity of applying dynamic analysis through the comparison with the results obtained by the authors by applying static nonlinear analysis on the structure under examination. The example treated in the context of the present paper is a compliant tower, set-up in deep water. Nonlinearities are considered both for the calculation of the wave loadings and the structural analysis. The wave loading is based on linear random wave theory and comparisons are provided with the steady wave theories, Airy and Stokes 5th. The former solution is based on the most probable shape of a large linear wave on a given sea-state; the auto-correlation function of the underlying spectrum. On the other hand, in the field of structural analysis, two cases are considered for comparison, static analysis and time history dynamic analysis. For both types of analysis, two sub-cases are considered, a case in which geometric nonlinearity and nonlinearities related to the modelling of the soil are considered and a case in which the corresponding linear theories are employed (reference cases). The structural calculations were performed using the well-known structural analysis software SAP2000, which was enhanced by a special programming interface that was developed to calculate the wave loading and to directly apply the generated loads on the structural members. The results show that the consideration of the particle velocities associated with the linear random wave theory in the wave loading lead to significant differences with respect to the steady wave theories in terms of the displacements and stresses of the structure. Moreover, irrespectively of the adopted wave theory, the nonlinear analyses lead to significant discrepancies with respect to the linear ones. This is mainly associated with the nonlinear properties of the soil. Another source of discrepancies between the results of static and dynamic analyses stems from the change of the effective natural frequency of the structure when nonlinearities are considered.


Sign in / Sign up

Export Citation Format

Share Document