Ensuring Successful Ship Construction Outcomes: Using More Physics-Based Design Tools in Early Concept Design

2012 ◽  
Author(s):  
Robert G. Keane

The Navy has experimented with many ways to improve the producibility of naval ship designs. In terms of effectiveness - does the ship do what it is supposed to do - the Navy has been reasonably successful. However, in terms of efficiency - are the ships efficient to produce and own - there is still much room for improvement. Design for producibility – being able to efficiently produce a warship - must start during the earliest stages of concept design and continue to be addressed during the subsequent pre-production processes. However, many early stage naval ship design engineers either do not recognize this need or do not know how to design for producibility. A number of improvements to early stage ship design capabilities are being developed in order to make the process both effective and efficient. This paper addresses the critical stage of the collaborative Design-Build-Own process of initially sizing the hull during concept design. The author proposes the development and use of more physics-based design tools during concept design, such as those being developed under the DoD High Performance Computing Modernization Program’s Computational Research & Engineering for Acquisition Tools & Environments (CREATE) – SHIPS Project. These new ship design methodologies will enable conceptual design engineers to adequately size a ship to meet military performance requirements and to have a low enough ship density to ensure successful ship construction outcomes. The director of a Netherlands’ shipyard which designs and builds surface combatants recently stated at a luncheon of the American Society of Naval Engineers (ASNE), “We learned a long time ago to give ourselves enough space to build a ship – steel is cheap, air is free!”

2015 ◽  
Author(s):  
William A. Hockberger

The Quadrimaran was invented in France in the mid-1980s by Daniel Tollet. It was an inspired design and a radical departure from traditional ship design by a man from outside the marine industry unconstrained by industry technical practices and education. Technical experts could see it would entail more structure and subsystems than other high-performance vessels, but its promise was that those penalties would be more than offset by its claimed low power and fuel consumption. A prototype/demonstrator, Alexander, was built in 1990 and operated for five years carrying and impressing many hundreds of riders. Alexander performed beautifully and appeared to bear out what was claimed. Contracts for several Quadrimarans of different sizes came quickly, especially considering how conservative an industry this is. That was significantly due to Tollet's personal charisma and skill in selling riders on the dream of carrying passengers and freight over the water fast and in comfort, yet economically. Great skepticism prevailed in some quarters, especially among naval architects knowledgeable about AMVs (advanced marine vehicles) and early-stage whole-ship design. At technical meetings, one Quadrimaran principal would comment, for example, "Why would you carry freight across the Atlantic at 38 knots on 230,000 horsepower (a reference to the planned Fastship Atlantic TG-770) when you could do it at 60 knots on only 65,000 horsepower?" Listeners would ask how this could be possible, and he would assert again that the Quadrimaran could do it, but would decline to explain. Respected technical people were working with Tollet and his company and becoming convinced of the Quadrimaran's merit. Along with the contracts came engineers with experience in ship detail design and construction (very different from early-stage whole-ship design), or responsibilities for assessing and approving ships for service. Others were with engine and equipment suppliers. Their opinion that there was something unique and special about the Quadrimaran gave it credibility and influenced more people to accept the major claims made for it. Some dismissed the most extreme claims but still accepted the idea that the Quadrimaran was capable of unusually high performance - considerably less than was being claimed, perhaps, but high nevertheless. In hindsight it is clear the skeptics were right. Results never met expectations, nor could they have. In reality, the Quadrimaran has aspects that inherently prevent it from achieving the characteristics and performance its inventor believed attainable. It cannot be built in a commercially useful size and actually perform as intended. Why this is so will be explained. A crucial fact in the Quadrimaran's history is that Daniel Tollet and his close associates believed strongly that naval architects and engineers who had been immersed in working with the existing ship types would be unable to give the Quadrimaran the very different treatment they believed it required. (Their own educations and professional work were nontechnical.) Such people were excluded from the development of Quadrimaran designs, and the belated discovery of many fundamental technical problems can be attributed to this. The company Tollet established had a number of names over the years, and other associated entities were created at times for various purposes. In this paper they are referred to collectively as QIH (Quadrimaran International Holdings) so as not to confuse things unnecessarily. In 2004 QuadTech Marine LLC was established and acquired the Quadrimaran patent (US Patent No. 5,191,849) and related intellectual property from QIH. QuadTech laid out an extensive R&D program to close gaps in the technical background and address identified issues. In the process, additional information on earlier QIH projects and products was obtained and studied, which brought to light problems that significantly compromised the Quadrimaran's prospective performance and utility. The resulting much-reduced set of potential uses and users led the company to effectively stop pursuing Quadrimaran projects after 2009. (Note: The author was Chief Technology Officer for QuadTech Marine during 2006-9, studying the Quadrimaran and planning the R&D.)


Author(s):  
J. B. Kerpestein

This paper reviews present day technology in the field of gearing for modern naval propulsion systems. It gives the Royal Schelde views on some aspects of gearing concept design and discusses gearing noise, being a most important aspect of the naval ship noise signature. The paper describes design features of a number of naval gear transmissions for gasturbine and diesel engine driven surface vessels, such as the Canadian Patrol Frigate Gear Transmission System and the Royal Netherlands Navy M-class frigate gearing. Some future trends and the probability of more stringent requirements concerning underwater noise are discussed.


2014 ◽  
Author(s):  
Robert G. Keane ◽  
Laury Deschamps ◽  
Steve Maguire

The Office of the Under Secretary of Defense, Acquisition, Technology and Logistics (AT&L) recently presented analyses of cost and schedule growth on Major Defense Acquisition Programs (MDAPs)over the last 20 years (2013, 2014). For naval ships, AT&L (2013) concluded that contract work content growth (not capability growth) dominates total cost growth statistically. In addition, costs-over-target are significant and reflect poor cost estimation or faulty framing assumptions. AT&L (2014) also concluded prices on fixed-price contracts are only “fixed” if the contractual work content remains fixed, but this is often not the case. The authors show that under-sizing the ship during concept design studies increases ship outfit density and adds complexities to the design. These early stage design decisions on sizing the ship are a major contributor to unnecessary work content growth later in Detail Design and Construction (DD&C) that cannot be eliminated no matter how productive the shipbuilder. However, new ship design methods are being developed and integrated with legacy physics-based design and analysis tools into a Rapid Ship Design Environment (RSDE)that will enable a more rational process for initially sizing ships. The authors also identify the need for early stage design measures of complexity and ship costing tools that are more sensitive to these measures, and proposed solutions that will aid decision-makers in reducing DD&C work content by making cost-effective design decisions in early stage naval ship design.


10.14311/532 ◽  
2004 ◽  
Vol 44 (2) ◽  
Author(s):  
R. W. Vroom ◽  
E. J. J. Van Breemen ◽  
W. F. Van der Vegte

In order to develop a successful product, a design engineer needs to pay attention to all relevant aspects of that product. Many tools are available, software, books, websites, and commercial services. To unlock these potentially useful sources of knowledge, we are developing C-DET, a toolbox for conceptual design engineering. The idea of C-DET is that designers are supported by a system that provides them with a knowledge portal on one hand, and a system to store their current work on the other. The knowledge portal is to help the designer to find the most appropriate sites, experts, tools etc. at a short notice. Such a toolbox offers opportunities to incorporate extra functionalities to support the design engineering work. One of these functionalities could be to help the designer to reach a balanced comprehension in his work. Furthermore C-DET enables researchers in the area of design engineering and design engineers themselves to find each other or their work earlier and more easily. Newly developed design tools that can be used by design engineers but have not yet been developed up to a commercial level could be linked to by C-DET. In this way these tools can be evaluated in an early stage by design engineers who would like to use them. This paper describes the first prototypes of C-DET, an example of the development of a design tool that enables designers to forecast the use process and an example of the future functionalities of C-DET such as balanced comprehension.


2018 ◽  
Vol Vol 160 (SE 18) ◽  
Author(s):  
D Andrews

Prior to the introduction of computers into Early Stage Ship Design of complex vessels, such as naval ships, the approach to synthesising a new design had been via weight equations. When it was realised that modern naval vessels (and some sophisticated service vessels) were essentially space driven initial (numerical) sizing needed to balance weight and space, together with simple checks on resistance & powering, plus sufficient intact stability (i.e. simple metacentric height assurance). All this was quickly computerised and subsequently put on a spread-sheet to iteratively achieve weight and space balance, while meeting those simple stability and R&P checks. Thus suddenly it became possible to produce very many variants, for both trade-off of certain requirements (against initial acquisition cost) as well (apparently) optimal solutions. However as this paper argues this speeding up of a very crude synthesis approach, before rapidly proceeding into feasibility investigations of the “selected design”, has not led to a quicker overall design process, nor have new ship designs been brought earlier into service, in timeframes remotely comparable to most merchant ships. It is the argument of this paper that such a speeding up of an essentially simplified approach to design synthesis is not sensible. Firstly, there is the need to conduct a more sophisticated approach in order to proceed in a less risky manner into the main design process for such complex vessels. Secondly, further advances in computer techniques, particularly those that CAD has adopted from computer graphics advances, now enable ship concept designers to synthesise more comprehensively and thereby address from the start many more of the likely design drivers. The paper addresses the argument for a more sophisticated approach to ESSD by first expanding on the above outline, before considering important design related issues that are considered to have arisen from major R.N. warship programmes over the last half century. This has been done by highlighting those UK naval vessel designs with which the author has had a notable involvement. The next section re-iterates an assertion that the concept phase (for complex vessels) is unlike the rest of ship design with a distinctly different primary purpose. This enables the structure of a properly organised concept phase to be outlined. Following this the issue of the extent of novelty in the design of a new design option is spelt out in more detail for the seven categories already identified. The next section consists of outlining the architecturally driven approach to ship synthesis with two sets of design examples, produced by the author’s team at UCL. All this then enables a generalised concept design process for complex vessels to be outlined, before more unconventional vessels than the naval combatant are briefly considered. The concluding main section addresses how a range of new techniques might further alter the way in which ESSD is addressed, in order to provide an even better output from concept to accomplish the downstream design and build process. The paper ends with a summary of the main conclusions.


2016 ◽  
Vol 32 (02) ◽  
pp. 110-123
Author(s):  
Robert G. Keane ◽  
Laurent Deschamps ◽  
Steve Maguire

The Office of the Under Secretary of Defense, Acquisition, Technology, and Logistics (AT&L) recently presented analyses of cost and schedule growth on Major Defense Acquisition Programs (MDAPs) over the last 20 years (2013, 2014). For naval ships, AT&L (2013) concluded that contract work content growth (not capability growth) dominates total cost growth statistically. In addition, costs-over-target are significant and reflect poor cost estimation or faulty framing assumptions. AT&L (2014) also concluded prices on fixed-price contracts are only "fixed" if the contractual work content remains fixed, but this is often not the case. We show that under-sizing the ship during concept design studies increases ship outfit density and adds complexities to the design. These early-stage design decisions on sizing the ship are a major contributor to unnecessary work content growth later in Detail Design and Construction (DD&C) that cannot be eliminated no matter how productive the shipbuilder. However, new ship design methods are being developed and integrated with legacy physicsbased design and analysis tools into a Rapid Ship Design Environment (RSDE) that will enable a more rational process for initially sizing ships. We also identify the need for early-stage design measures of complexity and ship costing tools that are more sensitive to these measures, and propose solutions that will aid decision-makers in reducing DD&C work content by making cost-effective design decisions in early-stage naval ship design.


1993 ◽  
Vol 9 (04) ◽  
pp. 210-223
Author(s):  
Robert G. Keane ◽  
Howard Fireman

In October 1989, A Ship Design for Producibility Workshop was held by the Naval Sea Systems Command (NAVSEA) at the David Taylor Research Center (DTRC). The purpose of the workshop was "To develop the framework of a plan to integrate producibility concepts and processes into the NAVSEA Ship Design Process." The major recommendations of the workshop included initiatives related to increased training of NAVSEA design engineers in modern ship production concepts, development of producibility design tools and practices for use by NAVSEA design engineers, improved cost models, implementation of producibility strategies for ship design process improvements, modification to existing acquisition practices, and improved three-dimensional (3-D) digital data transfer. The workshop was one of NAVSEA's first Total Quality Leadership (TQL) initiatives and was subsequently expanded into the Ship Design, Acquisition and Construction (DAC) Process Improvement Project. This paper reports on the major findings and recommendations of the workshop, the near term accomplishments since the workshop, and the long range strategic plan for continuously improving producibility in the Naval Ship Design Process.


Sign in / Sign up

Export Citation Format

Share Document