The Sophistication of Early Stage Design for Complex Vessels

2018 ◽  
Vol Vol 160 (SE 18) ◽  
Author(s):  
D Andrews

Prior to the introduction of computers into Early Stage Ship Design of complex vessels, such as naval ships, the approach to synthesising a new design had been via weight equations. When it was realised that modern naval vessels (and some sophisticated service vessels) were essentially space driven initial (numerical) sizing needed to balance weight and space, together with simple checks on resistance & powering, plus sufficient intact stability (i.e. simple metacentric height assurance). All this was quickly computerised and subsequently put on a spread-sheet to iteratively achieve weight and space balance, while meeting those simple stability and R&P checks. Thus suddenly it became possible to produce very many variants, for both trade-off of certain requirements (against initial acquisition cost) as well (apparently) optimal solutions. However as this paper argues this speeding up of a very crude synthesis approach, before rapidly proceeding into feasibility investigations of the “selected design”, has not led to a quicker overall design process, nor have new ship designs been brought earlier into service, in timeframes remotely comparable to most merchant ships. It is the argument of this paper that such a speeding up of an essentially simplified approach to design synthesis is not sensible. Firstly, there is the need to conduct a more sophisticated approach in order to proceed in a less risky manner into the main design process for such complex vessels. Secondly, further advances in computer techniques, particularly those that CAD has adopted from computer graphics advances, now enable ship concept designers to synthesise more comprehensively and thereby address from the start many more of the likely design drivers. The paper addresses the argument for a more sophisticated approach to ESSD by first expanding on the above outline, before considering important design related issues that are considered to have arisen from major R.N. warship programmes over the last half century. This has been done by highlighting those UK naval vessel designs with which the author has had a notable involvement. The next section re-iterates an assertion that the concept phase (for complex vessels) is unlike the rest of ship design with a distinctly different primary purpose. This enables the structure of a properly organised concept phase to be outlined. Following this the issue of the extent of novelty in the design of a new design option is spelt out in more detail for the seven categories already identified. The next section consists of outlining the architecturally driven approach to ship synthesis with two sets of design examples, produced by the author’s team at UCL. All this then enables a generalised concept design process for complex vessels to be outlined, before more unconventional vessels than the naval combatant are briefly considered. The concluding main section addresses how a range of new techniques might further alter the way in which ESSD is addressed, in order to provide an even better output from concept to accomplish the downstream design and build process. The paper ends with a summary of the main conclusions.

2015 ◽  
Author(s):  
Igor Mizine ◽  
Charles Rogers ◽  
Bruce D. Wintersteen

The objective of the ship design synthesis process is to derive a ship’s physical and performance characteristics based on mission requirements and selected technology and configuration options. To accomplish this objective an effective compromise must be achieved between the many competing requirements and constraints that form the available design space. The engineering disciplines that are addressed during the design synthesis process include; mission systems and cargo requirements, hull form geometry, hull subdivision, deckhouse geometry and subdivision, structures, appendages, resistance, propulsors, machinery arrangements, weight estimates, required arrangeable area and volume, intact stability and seakeeping. The hull form is a critical component of the design synthesis process. The hull is subdivided with decks and bulkheads to establish the compartment configuration (to the watertight compartment level) within the hull and to determine if the required mission capabilities and systems can be accommodated. The hull form is the principal boundary for the structural design. Required appendages must be integrated with the hull form. The propulsor design (propellers, waterjets, etc.) depends on resistance and the water flow around the hull form. The hull form significantly drives the propulsion power required and significantly impacts the location of the principle machinery equipment within the hull. While the weight estimates draw directly from the structural design and machinery equipment and other known data (mission systems), many of the other weight groups are estimated by algorithms. These algorithms are very dependent on hull volume and the distribution of that volume within the hull. Hull hydrostatics, stability and seakeeping are all very dependent on the hull form. The investigation of hull form variations during early stage design has long been limited by the capabilities present in the available design tools and their supporting framework. While some excellent hulls have been designed in parallel or preceding the overall ship design process, the limitations in design tools and their integration have often left the design process with a significant unknown as to whether the selected hull form is truly the best configuration for the ship and its mission. The hull form has a significant influence on almost every subsystem and discipline involved in ship design, not just hydrodynamics The routine Navy practice during early stage design has been to perform analysis based on a single baseline hull form point design, which is usually derived from dimensional scaling of existing designs or prototypes. This practice limits analysis of the hull form related characteristics and performance in concert with other tradeoffs and analysis of the disciplines that are very much influenced by the hull form. In some cases, this approach has perpetuated the undesirable characteristics of the selected starting hull form. In many, if not most recent designs, the limitations of our design process capabilities have produced less than optimal hull form configurations, especially in view of the operational profile, which determines the life cycle cost. In addition, late design improvements in hull form such as stern flaps or bulb changes result in the ship exceeding the design requirements that drive cost into the ship, i.e. larger engines installed then required to meet the ship’s KPP for speed. The paper explains how it is possible to overcome this limitation and how to restructure the ship design processes to facilitate effective investigation of hull form variations as part of the design synthesis process. The development of the hull form along with the overall development of the ship design configuration can be effectively integrated during the early Mizine Hull Form Exploration in the Early Stage of Design 2 stages of design when sufficient flexibility remains to enable the most effective design across all disciplines. This paper addresses the process, tools, and methodologies the authors have been developing and applying for several ship design projects to enable the effective development of the hull form and the investigation of hull form variations and their impact on the overall ship effectiveness. The approach used to facilitate the effective integration of the range of design and analysis tools necessary to support the process is described. The methodologies and theories used to investigate the potential range of hull form alternatives and assess their relative performance are presented. Examples of analyses done for actual design projects are provided, along with lessons-learned and recommendations for further refinements and improvements to the processes presented.


2021 ◽  
Vol 156 (A4) ◽  
Author(s):  
A S Piperakis ◽  
D J Andrews

Alongside deploying weapons and sensors what makes a warship distinct is its survivability, being the measure that enables a warship to survive in a militarily hostile environment. The rising cost of warship procurement, coupled with declining defence budgets, has led to cost cutting, often aimed at aspects, such as survivability, which may be difficult to quantify in a manner that facilitates cost capability trade-offs. Therefore, to meet ever-reducing budgets, in real terms, innovation in both the design process and the design of individual ships is necessary, especially at the crucial early design stages. Computer technology can be utilised to exploit architecturally orientated preliminary design approaches, which have been conceived to explore innovation early in the ship design process and the impact of such issues as survivability. A number of survivability assessment tools currently exist; however, most fail to integrate all the constituent elements of survivability (i.e. susceptibility, vulnerability and recoverability), in that they are unable to balance between the component aspects of survivability. Some of these tools are qualitative and therefore less than ideal in specifying survivability requirements, others are aimed towards the more detailed design stages where implementing changes is heavily constrained or even impractical. This paper presents a survivability assessment approach combining various tools used by UCL and the UK Ministry of Defence, as well as a new approach for recoverability assessment. The proposed method attempts to better integrate and quantify survivability in early stage ship design, which is facilitated by the UCL derived, architecturally focused, design building block approach. The integrated survivability method is demonstrated for a set of naval combatant concept designs and for two replenishment ship studies to test the robustness of the proposed approach.


2017 ◽  
Vol 33 (02) ◽  
pp. 81-100
Author(s):  
Rachel Pawling ◽  
Victoria Percival ◽  
David Andrews

For many years, the design spiral has been seen to be a convenient model of an acknowledged complex process. It has virtues particularly in recognizing the ship design interactive and, hopefully, converging nature of the process. However, many find it unsatisfactory. One early criticism focused on its apparent assumption of a relatively smooth process to a balanced solution implied by most ship concept algorithms. The paper draws on a postgraduate design investigation using the University College London Design Building Block approach, which looked specifically at a nascent naval combatant design and the issues of size associated with "passing decks" and margins. Results from the study are seen to suggest that there are distinct regions of cliffs and plateau in plots of capability against design output, namely ship size and cost. These findings are discussed with regard to the insight they provide into the nature of such ship designs and different ways of representing the ship design process. The paper concludes that the ship design spiral is a misleading and unreliable representation of complex ship design at both the strategic and detailed iterative levels.


2021 ◽  
pp. 62-77
Author(s):  
Negar Kalantar ◽  
Alireza Borhani

After sufficient consideration for the proper balance between material and formal constraints, this chapter describes a pedagogical approach that transforms the education of future architects through a 'form-finding' method, allowing the material to accommodate itself to form and celebrate its own nature. To enhance pedagogical improvement of foundational studies in architecture and further explore this pedagogy based on form-finding in early design education, this chapter also presents the challenges to integrating materiality within the design process, as derived from the incorporation of experimental form-finding methods into early-stage design.


Author(s):  
Catherine Elsen ◽  
Anders Häggman ◽  
Tomonori Honda ◽  
Maria C. Yang

Sketching and prototyping of design concepts have long been valued as tools to support productive early stage design. This study investigates previous findings about the interplay between the use and timing of use of such design tools. This study evaluates such tools in the context of team design projects. General trends and statistically significant results about “sketchstorming” and prototyping suggest that, in certain constrained contexts, the focus should be on the quality of information rather than on the quantity of information generated, and that prototyping should begin as soon as possible during the design process. Ramifications of these findings are discussed in the context of educating future designers on the efficient use of design tools.


2011 ◽  
Vol 308-310 ◽  
pp. 943-946
Author(s):  
Jian Guo Zhang ◽  
He Rong Liu

A novel aid with self-care and rehabilitation function has been designed based on ergonomics, according to the functional demand of ADL (Activities of Daily Living) and the requirements of rehabilitation training for disabled people or elderly. The overall design process and the main functions of the aid were introduced in this paper. Its concept design and motion simulation is finished by using Pro/E software. The aid can meet the ADL demand of the disabled people and elderly such as getting up, going to the toilet etc.


Author(s):  
Hui Dong ◽  
William H. Wood

Design for manufacture (DfM) has made significant strides by recommending incremental changes to design details. As DfM is pushed further upstream in the design process, it becomes an integral part of design. In the earliest stages of design, designers must consider the manufacturing implications of all of their decisions and trade them against other aspects of design performance. We present a decision-based framework for system-level DfM that focuses on the entire design process. To examine this methodology, we present issues arising from the development of an integrated design process for mechatronic products that includes both DfM evaluations and heuristic DfM design practices as ways to shape the early design process. Integrating DfM into design search must happen at the system level, doing so requires improving the overall design synthesis process.


2014 ◽  
Author(s):  
Robert G. Keane ◽  
Laury Deschamps ◽  
Steve Maguire

The Office of the Under Secretary of Defense, Acquisition, Technology and Logistics (AT&L) recently presented analyses of cost and schedule growth on Major Defense Acquisition Programs (MDAPs)over the last 20 years (2013, 2014). For naval ships, AT&L (2013) concluded that contract work content growth (not capability growth) dominates total cost growth statistically. In addition, costs-over-target are significant and reflect poor cost estimation or faulty framing assumptions. AT&L (2014) also concluded prices on fixed-price contracts are only “fixed” if the contractual work content remains fixed, but this is often not the case. The authors show that under-sizing the ship during concept design studies increases ship outfit density and adds complexities to the design. These early stage design decisions on sizing the ship are a major contributor to unnecessary work content growth later in Detail Design and Construction (DD&C) that cannot be eliminated no matter how productive the shipbuilder. However, new ship design methods are being developed and integrated with legacy physics-based design and analysis tools into a Rapid Ship Design Environment (RSDE)that will enable a more rational process for initially sizing ships. The authors also identify the need for early stage design measures of complexity and ship costing tools that are more sensitive to these measures, and proposed solutions that will aid decision-makers in reducing DD&C work content by making cost-effective design decisions in early stage naval ship design.


2019 ◽  
Vol 7 (12) ◽  
pp. 450 ◽  
Author(s):  
Francesco Mauro ◽  
Luca Braidotti ◽  
Giorgio Trincas

To face the design of a new ship concept, the evaluation of multiple feasible solutions concerning several aspects of naval architecture and marine engineering is necessary. Compressed natural gas technologies are in continuous development; therefore, there are no available databases for existing ships to use as a basis for the design process of a new unit. In this sense, the adoption of a modern multi-attribute decision-based method can help the designer for the study of a completely new ship prototype. A database of compressed natural gas ships was generated starting from a baseline hull, varying six hull-form parameters by means of the design of experiment technique. Between the attributes involved in the concept design process, stability is for sure one of the most relevant topics, both for intact and damaged cases. This work describes two approaches to identify the compliance of a ship with the intact stability regulations based on the ship main geometrical quantities. Moreover, a metamodel based on the maximum floodable length concept (damage stability) allows determining the main internal subdivision of the ship. The metamodel outcomes were compared with results from direct calculations on a ship external to the database, highlighting the adequate accuracy given by the developed methods.


2012 ◽  
Author(s):  
Robert G. Keane

The Navy has experimented with many ways to improve the producibility of naval ship designs. In terms of effectiveness - does the ship do what it is supposed to do - the Navy has been reasonably successful. However, in terms of efficiency - are the ships efficient to produce and own - there is still much room for improvement. Design for producibility – being able to efficiently produce a warship - must start during the earliest stages of concept design and continue to be addressed during the subsequent pre-production processes. However, many early stage naval ship design engineers either do not recognize this need or do not know how to design for producibility. A number of improvements to early stage ship design capabilities are being developed in order to make the process both effective and efficient. This paper addresses the critical stage of the collaborative Design-Build-Own process of initially sizing the hull during concept design. The author proposes the development and use of more physics-based design tools during concept design, such as those being developed under the DoD High Performance Computing Modernization Program’s Computational Research & Engineering for Acquisition Tools & Environments (CREATE) – SHIPS Project. These new ship design methodologies will enable conceptual design engineers to adequately size a ship to meet military performance requirements and to have a low enough ship density to ensure successful ship construction outcomes. The director of a Netherlands’ shipyard which designs and builds surface combatants recently stated at a luncheon of the American Society of Naval Engineers (ASNE), “We learned a long time ago to give ourselves enough space to build a ship – steel is cheap, air is free!”


Sign in / Sign up

Export Citation Format

Share Document