scholarly journals Developing a Conceptual Design Engineering Toolbox and its Tools

10.14311/532 ◽  
2004 ◽  
Vol 44 (2) ◽  
Author(s):  
R. W. Vroom ◽  
E. J. J. Van Breemen ◽  
W. F. Van der Vegte

In order to develop a successful product, a design engineer needs to pay attention to all relevant aspects of that product. Many tools are available, software, books, websites, and commercial services. To unlock these potentially useful sources of knowledge, we are developing C-DET, a toolbox for conceptual design engineering. The idea of C-DET is that designers are supported by a system that provides them with a knowledge portal on one hand, and a system to store their current work on the other. The knowledge portal is to help the designer to find the most appropriate sites, experts, tools etc. at a short notice. Such a toolbox offers opportunities to incorporate extra functionalities to support the design engineering work. One of these functionalities could be to help the designer to reach a balanced comprehension in his work. Furthermore C-DET enables researchers in the area of design engineering and design engineers themselves to find each other or their work earlier and more easily. Newly developed design tools that can be used by design engineers but have not yet been developed up to a commercial level could be linked to by C-DET. In this way these tools can be evaluated in an early stage by design engineers who would like to use them. This paper describes the first prototypes of C-DET, an example of the development of a design tool that enables designers to forecast the use process and an example of the future functionalities of C-DET such as balanced comprehension.

2012 ◽  
Author(s):  
Robert G. Keane

The Navy has experimented with many ways to improve the producibility of naval ship designs. In terms of effectiveness - does the ship do what it is supposed to do - the Navy has been reasonably successful. However, in terms of efficiency - are the ships efficient to produce and own - there is still much room for improvement. Design for producibility – being able to efficiently produce a warship - must start during the earliest stages of concept design and continue to be addressed during the subsequent pre-production processes. However, many early stage naval ship design engineers either do not recognize this need or do not know how to design for producibility. A number of improvements to early stage ship design capabilities are being developed in order to make the process both effective and efficient. This paper addresses the critical stage of the collaborative Design-Build-Own process of initially sizing the hull during concept design. The author proposes the development and use of more physics-based design tools during concept design, such as those being developed under the DoD High Performance Computing Modernization Program’s Computational Research & Engineering for Acquisition Tools & Environments (CREATE) – SHIPS Project. These new ship design methodologies will enable conceptual design engineers to adequately size a ship to meet military performance requirements and to have a low enough ship density to ensure successful ship construction outcomes. The director of a Netherlands’ shipyard which designs and builds surface combatants recently stated at a luncheon of the American Society of Naval Engineers (ASNE), “We learned a long time ago to give ourselves enough space to build a ship – steel is cheap, air is free!”


Author(s):  
Wenbin Hou ◽  
Chunlai Shan ◽  
Hongzhe Zhang

Since product development lead-time needs to be as short as possible in contemporary enterprises, it is necessary to assess and optimize the performance of the structure in conceptual design phase for avoiding the time consuming production of trial models for vehicle body. This paper proposes a conceptual design tool based on optimization algorithms for global body frames named Vehicle Concept Design-Intelligent CAE system (VCD-ICAE). A multilevel optimization algorithm is applied to optimize the body performance, decide the size parameters, and generate cross-sectional shapes that satisfy design engineers’ required characteristics. The global body stiffness and vibration property would be optimized while decreasing the mass of body. The paper describes the implementation of the optimal algorithm, and Genetic algorithms are applied to solve the optimization problem. A case of optimization for a real car is given to verify the validity of the algorithm.


2006 ◽  
Vol 34 (3) ◽  
pp. 170-194 ◽  
Author(s):  
M. Koishi ◽  
Z. Shida

Abstract Since tires carry out many functions and many of them have tradeoffs, it is important to find the combination of design variables that satisfy well-balanced performance in conceptual design stage. To find a good design of tires is to solve the multi-objective design problems, i.e., inverse problems. However, due to the lack of suitable solution techniques, such problems are converted into a single-objective optimization problem before being solved. Therefore, it is difficult to find the Pareto solutions of multi-objective design problems of tires. Recently, multi-objective evolutionary algorithms have become popular in many fields to find the Pareto solutions. In this paper, we propose a design procedure to solve multi-objective design problems as the comprehensive solver of inverse problems. At first, a multi-objective genetic algorithm (MOGA) is employed to find the Pareto solutions of tire performance, which are in multi-dimensional space of objective functions. Response surface method is also used to evaluate objective functions in the optimization process and can reduce CPU time dramatically. In addition, a self-organizing map (SOM) proposed by Kohonen is used to map Pareto solutions from high-dimensional objective space onto two-dimensional space. Using SOM, design engineers see easily the Pareto solutions of tire performance and can find suitable design plans. The SOM can be considered as an inverse function that defines the relation between Pareto solutions and design variables. To demonstrate the procedure, tire tread design is conducted. The objective of design is to improve uneven wear and wear life for both the front tire and the rear tire of a passenger car. Wear performance is evaluated by finite element analysis (FEA). Response surface is obtained by the design of experiments and FEA. Using both MOGA and SOM, we obtain a map of Pareto solutions. We can find suitable design plans that satisfy well-balanced performance on the map called “multi-performance map.” It helps tire design engineers to make their decision in conceptual design stage.


Author(s):  
Valeria S. Guevara ◽  
Mark Moening ◽  
Brian R. Smith ◽  
Dennis B. Finley ◽  
Patrick J. Yagle

Author(s):  
Cari R. Bryant ◽  
Matt Bohm ◽  
Robert B. Stone ◽  
Daniel A. McAdams

This paper builds on previous concept generation techniques explored at the University of Missouri - Rolla and presents an interactive concept generation tool aimed specifically at the early concept generation phase of the design process. Research into automated concept generation design theories led to the creation of two distinct design tools: an automated morphological search that presents a designer with a static matrix of solutions that solve the desired input functionality and a computational concept generation algorithm that presents a designer with a static list of compatible component chains that solve the desired input functionality. The merger of both the automated morphological matrix and concept generation algorithm yields an interactive concept generator that allows the user to select specific solution components while receiving instantaneous feedback on component compatibility. The research presented evaluates the conceptual results from the hybrid morphological matrix approach and compares interactively constructed solutions to those returned by the non-interactive automated morphological matrix generator using a dog food sample packet counter as a case study.


Author(s):  
Gary A. Gabriele ◽  
Agustî Maria I. Serrano

Abstract The need for superior design tools has lead to the development of better and more complex computer aided design programs. Two of the more important new developments in application tools being investigation are Object Oriented Languages, and HyperMedia. Object Oriented Languages allow the development of CAD tools where the parts being designed and the design procedures specified are conceptualized as objects. This allows for the development of design aids that are non-procedural and more readily manipulated by the user trying to accomplish a design task. HyperMedia allows for the easy inclusion of many different types of data, such as design charts and graphs, into the tool that are normally difficult to include in design tools programmed with more conventional programming languages. This paper explores the development of a computer aided design tool for the design of a single stage gear box using the development HyperCard® environment and the HyperTalk® programming language. The resulting program provides a user friendly interface, the ability to handle several kinds of design information including graphic and textual, and a non-procedural design tool to help the user design simple, one stage gear boxes. Help facilities in the program make it suitable for undergraduate instruction in a machine elements design course.


Author(s):  
C. P. Huang ◽  
F. W. Liou ◽  
J. J. Malyamakkil ◽  
W. F. Lu

Abstract This paper presents an advisory conceptual design tool for mechanical transmission systems. Space consideration was taken into account during the design process. A prototype function tree was built in the form of knowledge-based system to transfer a designer’s idea into a set of mechanical components. An advisory expert system was also developed to help a designer in decision making. As an example, a packaging machine is designed using the developed system.


Sign in / Sign up

Export Citation Format

Share Document