Bringing Big Data Technology to Wind Turbine Installation Vessels

2021 ◽  
Author(s):  
Kayo Vanderheggen ◽  
Nate Meredith ◽  
Joost Janssen ◽  
Alberto Morandi

Digitalization is a key component of the ongoing Energy Transition. Although the offshore and maritime industries tend to be conservative in the adoption of new technologies, in recent years a digital journey was embraced to stay competitive, safe, and efficient. Data from mobile offshore units can be transformed into something valuable. However, collecting and processing of system’s data requires proper infrastructure, a software platform that handles data delivery and applications that translate the data into valuable information. The challenge is therefore to turn good ideas and intentions into solutions that add real value. With this challenge in mind, in recent years GustoMSC | NOV worked on Big Data technology for wind turbine installation vessels (WTIVs). The purpose of this endeavor is to assist our end users in increasing the safety and efficiency of their operations. This paper addresses some key aspects and components of this digital journey and shares experiences on merging Information Technology (IT) and Operational Technology (OT) environments in an ongoing effort to fulfill the promise that Industrial Internet of Things (IIoT) technology brings. A practical example is presented where Big Data is used to boost the performance of mobile offshore wind installation units.

2019 ◽  
Vol 17 (05) ◽  
pp. 1940007
Author(s):  
Ya-Nan Huang ◽  
Wen-Hua Wang ◽  
Jun Liu ◽  
Yan-Ying Wang

Wind turbine installation vessel (WTIV) is a kind of special ship that has large upper deck and shallow draft, which is specifically designed for the installation of offshore wind turbines. However, accurately predicting the motion of WTIV is still a challenge. In this paper, computational fluid dynamics (CFD) is adopted to investigate the motion of WTIV under different wave conditions in a three-dimensional numerical wave tank using commercial software Star-CCM+. Reynolds Averaged Navier–Stokes (RANS) equations and [Formula: see text] turbulent models are used for modeling the turbulent flow, and volume of fluid (VOF) method is applied to track the location and shape of transit-free surface. The overset grid technique is taken to handle the fluid–structure interaction (FSI) problem with large motion amplitude. The simulation results have been validated by comparing with the experimental data, and show potential to provide theoretical guidance and technical support for the motion of WTIV in waves.


2021 ◽  
Author(s):  
Jiafeng Xu ◽  
Behfar Ataei ◽  
Karl Henning Halse ◽  
Hans Petter Hildre ◽  
Egil Tennfjord Mikalsen

2019 ◽  
Vol 188 ◽  
pp. 106238 ◽  
Author(s):  
Min-Yuan Cheng ◽  
Yung-Fu Wu ◽  
Yu-Wei Wu ◽  
Sainabou Ndure

2021 ◽  
Author(s):  
Baran Yeter ◽  
Yordan Garbatov ◽  
Carlos Guedes Soares

Abstract The objective of the present study is to perform a systematic data analysis of structural health monitoring data for ageing fixed offshore wind turbine support structures. The life-cycle extension of the first offshore wind farms is under serious consideration since the support structures are still in a condition to be used further. Big data analytics and machine learning techniques can aid to extract useful information from the monitoring data collected during the service life and build models for future predictions of an optimal life-extension. To this end, it is aimed to analyse the big data provided by embedded control systems and non-destructive inspections of ageing offshore wind turbine support structures using pre-processing techniques, including denoising, detrending, and filtering to remove the noise of different nature and seasonality as well as to detect the signal-specific contents affecting the structural integrity in the time and frequency domain. The effectiveness of the Welch method is investigated in terms of dealing with noisy signals in the frequency domain. Besides, the principal component analysis is carried out to reduce the dimensionality of the data and to select the most significant features that are responsible for most of the variance in the structural health monitoring data. Moreover, nonparametric statistical methods are used to test whether the data before noise being added and the data after cleansing the added noise came from the population with the same distribution. Further, permutation (randomisation) testing is performed to predicate that the results of the nonparametric test are statistically significant. The outcome of this study provides refined evidence that enables to feed the condition monitoring data into the training of the deep neural network to be able to discriminate different structural conditions.


2014 ◽  
Vol 1061-1062 ◽  
pp. 1124-1128
Author(s):  
Lei Xin ◽  
Chang Han Ng ◽  
Song Lin Yang

A mathematical model is proposed for predicting static water resistance of offshore wind turbine installation vessel and to calculate the resistance of a certain type of offshore wind turbine installation vessel. In order to verify the efficiency of this mathematical model, the comparison between results calculated by it and actual model test has been made. The conclusion indicates that the estimation method is reliable, and it can provide reference for resistance calculation of similar type vessels. Currently in China, there are no references for the effective prediction and calculation of the resistance for offshore wind turbine installation vessel. Therefore the proposed method has important value of engineering application in the areas of effective resistance estimation method of offshore wind turbine installation vessel, as well as the numerical calculation of ship hydrodynamics.


Author(s):  
Huiqu Fan ◽  
Jinbao Lin ◽  
Qingsong Shi

Compared to onshore wind turbines, offshore wind turbines take advantage of wind speeds which are more constant and stronger than those on land. Since many large electricity load centers are located near coastline in China, larger wind turbines can be installed closer to these areas to supply energy in a more economical way. Wind turbine transportation and installation are key issues for offshore wind farm construction, especially for large size turbine installation in ultra-shallow water like intertidal zone with water depth less than 5m. The traditional installation vessels with large design drafts are likely to be trapped in shallow water zones. It is usually impossible to carry out turbine installation in shallow water. This paper presents a set of innovative installation vessel concept and corresponding methods for ultra-shallow water zone include ultra-shallow draft crane vessel and ultra-shallow draft barge. The main purpose is to simplify the installation procedures and reduce total investment.


Sign in / Sign up

Export Citation Format

Share Document