Formulation Development of Immediate Release Solid Dispersion Tablets of Lovastatin with Enhanced Dissolution

2019 ◽  
Vol 12 (10) ◽  
pp. 4963
Author(s):  
Amaresh Chandra Sahoo ◽  
Sunil Kumar Kanungo ◽  
Subas Chandra Dinda ◽  
Sujit Dash ◽  
Suchismita Pani
2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Ritesh Fule ◽  
Purnima Amin

Invasive antifungal infections are reasons for morbidity and mortality in immunogenic patients worldwide. Posaconazole is a most promising antifungal agent against all types of invasive infections with high % of cure rate. The marketed suspension formulation has low bioavailability and is needed to be taken with food. In this paper, PCZ hot melt extruded amorphous solid dispersion (SD) with immediate release and improved bioavailability was prepared using Soluplus (Sol) as primary carrier for solubilization. Surfactants such as PEG 400, Lutrol F27, Lutrol F68, and TPGS are also used in combination with Soluplus to improve the physicochemical performance of the formulation when it comes in contact with GI (gastrointestinal) fluid. Drug-polymer miscibility of SD was investigated using advanced techniques. In thein vivostudy, the AUC(0–72)andCmaxof PCZ/Soluplus were 11.5 and 11.74 time higher than those of pure PCZ. The formulation of the extrudate SD had an AUC(0–72)andCmaxhigher than those with the commercial capsule (Noxafil). Molecular dynamic (MD) simulation studies were carried out usingin silicomolecular modelling to understand the drug-polymer intermolecular behaviour. The results of this research ensure enhanced dissolution and bioavailability of the solid dispersion of PCZ prepared by HME compared with the PCZ suspension.


2018 ◽  
Vol 8 (5) ◽  
pp. 294-302
Author(s):  
Mayuri Sisodiya ◽  
Ravindranath Saudagar

The objective of the study was to enhance the solubility and dissolution rate of Tadalafil using hydrophilic carriers such as PVP K-30, Poloxamer 188, Sodium starch glycolate and compatibility study of Tadalafil with different polymers by FTIR. Characterization of solid dispersion-FTIR, DSC and phase solubility analysis was study to improve the oral bioavailability. Formulation and evaluation of immediate release tablets prepare from solubility enhanced Tadalafil. Among the various approaches Solvent evaporation has gained good acceptance in recent years in the industry for enhancing the solubility and dissolution rate of poorly soluble drugs. Poloxamer 188 used as polymer as it is good solubilizing agent. As per the phase solubility studies, a 32 factorial study were used to prepare the immediate release tablet and evaluated for the interactions and in vitro drug release. Sodium Starch Glycolate and PVP used as superdisintegrants. The solubility of tadalafil in selected ratios containing tadalafil and Poloxamer 188 solid dispersion prepared by solvent evaporation was determined. From the various ratios 1:0.5 was resulted in a much higher enhancement (9.75folds). Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) studies conducted, explain overall drug and excipients compatibility. More than 90% of tadalafil was released from IR tablet within 30 min. There is enhancement of the solubility rate if tadalafil by solid dispersion with Poloxamer 188 prepared by solvent evaporation method. The compatibility studies of the drug and polymers showed that there was no incompatibility between them. Wet granulation method showed that, the desired flow properties for the compression into tablets. Tablets were prepared using wet granulation method resulted into simple, cheap, more suitable method for the manufacturing immediate release dosage form.


Author(s):  
Natarajan R ◽  
N Patel ◽  
Rajendran N N ◽  
M Rangapriya

The main goal of this study was to develop a stable formulation of antihypertensive drugs telmisartan and hydrochlorothiazide as an immediate-release bilayer tablet and to evaluate the dissolution profile in comparison with a reference product. The formulation development work was initiated with wet granulation. Telmisartan was converted to its sodium salt by dissolving in aqueous solution of sodium hydroxide to improve solubility and drug release. Lactose monohydrate and microcrystalline cellulose were used as diluents. Starch paste is prepared in purified water and was used as the binder. Sodium starch glycolate is added as a disintegrating agent. Magnesium stearate was used as the lubricant. The prepared granules were compressed into a double-layer compression machine. The tablets thus formulated with higher proportion of sodium starch glycolate showed satisfactory physical parameters, and it was found to be stable and in vitro release studies are showed that formulation (F-T5H5) was 101.11% and 99.89% respectively. The formulation T5H5 is further selected and compared with the release profile of the innovator product, and was found to be similar (f2 factor) to that of the marketed product. The results suggest the feasibility of developing bilayer tablets consisting of telmisartan and hydrochlorothiazide for the convenience of patients with hypertension.  


Author(s):  
Sudarshan Singh ◽  
S S Shyale ◽  
H G Sandip

In present investigation liquisolid compact technique is investigated as a tool for enhanced dissolution of poorly water-soluble drug Ketoconazole. The liquisolid tablets were formulated with liquid medications, namely Propylene Glycol (PG) drug concentrations, 60% w/w, 70% w/w and 80% w/w. Avicel pH102 was used as a carrier material, Aerosil 200 as a coating material and Sodium starch glycollate as a super-disintegrant. Quality control tests, such as uniformity of tablet weight, uniformity of drug content, tablet hardness, friability test, disintegration and dissolution tests were performed to evaluate prepared tablets. For further confirmation of results the liquisolid compacts were evaluated by XRD and FTIR studies to prove that, solubility of Ketoconazole has been increased by liquisolid compact technique. From the results obtained, it was be speculated that such systems exhibit enhanced drug release profiles due to increased wetting properties and surface of drug available for dissolution. As liquisolid compacts demonstrated significantly higher drug release rates, in PG as compared to directly compressible tablets and conventional wet granulation, we lead to conclusion that it could be a promising strategy in improving the dissolution of poor water soluble drugs and formulating immediate release solid dosage forms.  


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (06) ◽  
pp. 13-19
Author(s):  
R. O Sonawane ◽  
◽  
S. Nayak ◽  
M. D. Chaudhari ◽  
V. V. Pande

The poorly water soluble drugs tend to have low bioavailability and this can be improved by several methods. Solid dispersion is a promising formulation approach to improve solubility and dissolution and ultimately oral bioavailability of these drugs. The aim of this study was to prepare and characterize solid dispersion of anti-diabetic glimepiride, a BCS class II drug, with the hydrophilic carrier PVP K30 by solvent evaporation and microwave induced fusion methods. Scanning electron microscopy (SEM), X–ray powder diffractometry (XRD) and differential scanning calorimetric (DSC) were used to evaluate the physical state of the drug. The solid dispersions were also evaluated for drug content, solubility and dissolution studies. Solid dispersions prepared by solvent evaporation method were showed maximum enhancement of solubility and dissolution in comparison to that prepared by other method.


Author(s):  
Hemant Kumar Jain ◽  
Madhuri Taware

Objective: To improve dissolution properties of atazanavir sulphate by preparing gastro-retentive granules by solid dispersion method and development of RP-HPLC method for estimation of this drug.Methods: Estimation of atazanavir sulphate was done using high performance liquid chromatography (HPLC) on inertsil column (5 µm, 250x4, 6 mm) with a mobile phase consists of methanol: water (91:9 v/v), at 0.5 ml/min flow rate and 249 nm UV detection. The method was validated as per ICH guidelines. Selection of the carrier for gastro-retentive formulation was based on phase solubility study of the drug. Solid dispersions of gastro-retentive granules of different composition of drug and carrier, were prepared by the kneading, heating and solvent evaporation. A 32factorial design was applied to optimize the gastro-retentive formulation. The amounts of polyethylene glycol 6000 (PEG 6000) (X1) and hydroxypropyl methyl cellulose (HPMC) (X2) were selected as independent variables and in vitro-release at 5, 9 h and total floating time was selected as dependent variables. Results: HPLC method was found to be linear in a concentration range of 10-60 μg/ml of the drug (r2= 0.999). The low value of % RSD in precision study indicates reproducibility of the method. The low value of LOD and LOQ suggests the sensitivity of the method. The solubility enhancement study of drug with various carriers followed descending order of solubility [Gelucire 44/14>PEG 6000>polyvinyl pyrrilidone (PVP)]. Highest % cumulative release was observed for the heating method at drug polymer (PEG 6000) ratio 1:5. Hence, this ratio has been selected for preparation of solid dispersion. From comparison of dissolution profile of formulated batches, formulation F4 [containing PEG6000 (1.6 g) and HPMC (200 mg)] showed promising dissolution parameters with desired floating properties.Conclusion: Results obtained by validation studies suggested that the developed HPLC method is simple, accurate, precise and can be used for routine analysis of atazanavir sulphate formulation. Results of evaluation of prepared batches indicate that batch F4 is a promising formulation for gastro-retentive dosage form of drug. 


Author(s):  
A. N. Patil ◽  
D. M. Shinkar ◽  
R. B. Saudagar

Enhancement of solubility, dissolution rate and bioavailability of the drug is a very challenging task in drug development, nearly 40% of the new chemical entities currently being discovered are poorly water soluble drugs. The solubility behaviour of the drugs remains one of the most challenging aspects in formulation development. This results in important products not reaching the market or not achieving their full potential. Solid dispersion is one of the techniques adopted for the formulation of such drugs and various methods are used for the preparation of solid dispersion. Solid dispersion is generally prepared with a drug which is having poor aqueous solubility and hydrophilic carrier. This article review various methods and concept of solid dispersion, criteria for drug selection, advantage and disadvantage, characterization, and application.


Sign in / Sign up

Export Citation Format

Share Document