Bismuth Nitrate Catalysed Convenient Synthesis of 1,8-Dioxo-Octahydro xanthene Derivatives

2021 ◽  
Vol 40c (2) ◽  
pp. 57-62
Author(s):  
A. Sudhakara ◽  
Varma P. Prabhakara ◽  
R.D. Pruthviraj ◽  
S. Ramesha ◽  
Nair Pradeep
2017 ◽  
Vol 68 (1) ◽  
pp. 180-185
Author(s):  
Adriana Maria Andreica ◽  
Lucia Gansca ◽  
Irina Ciotlaus ◽  
Ioan Oprean

Were developed new and practical synthesis of (Z)-7-dodecene-1-yl acetate and (E)-9-dodecene-1-yl acetate. The routes involve, as the key step, the use of the mercury derivative of the terminal-alkyne w-functionalised as intermediate. The synthesis of (Z)-7-dodecene-1-yl acetate was based on a C6+C2=C8 and C8+C4=C12 coupling scheme, starting from 1,6-hexane-diol. The first coupling reaction took place between 1-tert-butoxy-6-bromo-hexane and lithium acetylide-ethylendiamine complex obtaining 1-tert-butoxy-oct-7-yne, which is transformed in di[tert-butoxy-oct-7-yne]mercury. The mercury derivative was directly lithiated and then alkylated with 1-bromobutane obtaining 1-tert-butoxy-dodec-7-yne. After acetylation and reduction with lithium aluminium hydride of 7-dodecyne-1-yl acetate gave (Z)-7-dodecene-1-yl acetate with 96 % purity. The synthesis of (E)-9-dodecene-1-yl acetate was based on a C8+C2=C10 and C10+C2=C12 coupling scheme, starting from 1,8-octane-diol. The first coupling reaction took place between 1-tert-butoxy-8-bromo-octane and lithium acetylide-ethylendiamine complex obtaining 1-tert-butoxy-dec-9-yne, which is transformed in di[tert-butoxy-dec-9-yne]mercury. The mercury derivative was directly lithiated and then alkylated with 1-bromoethane obtaining 1-tert-butoxy-dodec-9-yne. After reduction with lithium aluminium hydride of 1-tert-butoxy-(E)-9-dodecene and acetylation was obtained (E)-9-dodecene-1-yl acetate with 97 % purity.


2018 ◽  
Vol 69 (7) ◽  
pp. 1702-1705
Author(s):  
Ayesha Kanwal ◽  
Muhammad Imran ◽  
Zafar Iqbal ◽  
Summia Rehman ◽  
Zeeshan Danish ◽  
...  

Piroxicam [4-hydroxy-2-methyl-N-2-(pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide] is an effective antiinflammatory analgesic drug. In the present work, piroxicam has been chemically modified into its bismuth complex by reacting it with bismuth nitrate at ambient conditions and optimized stoichiometric ratio. The synthesis of the complex has been monitored by TLC and characterized well by Fourier Transform Infrared (FTIR), UV-Vis, ICP, TGA, XRD and SEM. The luminescent behavior of this complex has also been studied which determined its photoluminescent property.


2016 ◽  
Vol 13 (5) ◽  
pp. 352-358
Author(s):  
Jayaprakash Rao Yerrabelly ◽  
Pradeep Rebelli ◽  
Bharathi Kumari Yalamanchili ◽  
Venkat Reddy Ghojala
Keyword(s):  

2019 ◽  
Vol 16 (5) ◽  
pp. 776-786 ◽  
Author(s):  
Deepa ◽  
Geeta D. Yadav ◽  
Mohd J. Aalam ◽  
Pooja Chaudhary ◽  
Surendra Singh

Objective:DABCO salts were evaluated as catalysts for the Biginelli reaction between 4- methoxybenzaldehyde, urea and ethyl acetoacetate under solvent-free conditions. 1,4-Diazabicyclo [2.2.2] octane triflate was found to be a simple, inexpensive, highly efficient catalyst for Biginelli reaction for a variety aromatic aldehyde with urea and ethyl acetoacetate at 80°C afforded corresponding 3,4-dihydropyrimidinones in 50-99% yields after 30-120 minutes. 1,3-Cyclohexadione was used in place of ethyl acetoacetate in the absence of urea this methodology is giving hexahydro xanthene derivatives in good to excellent yields after 3-4 hours.Methods:DABCO salt 4 (5 mol%), 4-methoxybenzaldehyde (0.73 mmol) and urea (0.73 mmol) were stirred for 10 minutes at 80°C, then ethyl acetoacetate (1.5 equiv.) was added and reaction mixture was stirred at 80°C for specified time. The resulting solution was stirred continuously and progress of the reaction was followed by TLC. The crude reaction mixture was purified by flash column chromatography on silica gel (hexane/ethyl acetate (1:2)) to give pure desired product.Results:Reaction conditions of the Biginelli reaction were optimized using 4-methoxybenzaldehyde (0.73 mmol), urea (0.73 mmol), and ethyl acetoacetate (5 equiv.) as model substrates catalyzed by 1,4-Diazabicyclo [2.2.2] octane triflate (5 mol%) in a different solvents, screening of different catalysts and different temperatures. Neat condition was found to be the best for the Biginelli condensation and corresponding 3,4- dihydropyrimidinones was obtained in good to excellent yields. When the reaction was carried out with benzaldehyde derivatives and cyclohexane-1,3-dione in place of ethyl acetoacetate in the absence of urea, solely corresponding hexahydro xanthene derivatives were obtained in 61-91% yields.Conclusion:In conclusion, we have applied salts of 1,4-Diaza-bicyclo [2.2.2] octane as catalysts in the Biginelli condensation and corresponding 3,4-dihydropyrimidinones were obtained in 50- 99% yields under solvent free conditions. This methodology is having advantages like simple work-up; low loading of catalyst and reaction was performed at moderate temperature under solvent-free conditions.


2018 ◽  
Vol 16 (1) ◽  
pp. 3-10
Author(s):  
Aniket P. Sarkate ◽  
Kshipra S. Karnik ◽  
Pravin S. Wakte ◽  
Ajinkya P. Sarkate ◽  
Ashwini V. Izankar ◽  
...  

Background:A novel copper-catalyzed synthesis of substituted-1,2,3-triazole derivatives has been developed and performed by Huisgen 1,3-dipolar cycloaddition reaction of azides with alkynes. The reaction is one-pot multicomponent.Objective:We state the advancement and execution of a methodology allowing for the synthesis of some new substituted 1,2,3-triazole analogues with antimicrobial activity.Methods:A series of triazole derivatives was synthesized by Huisgen 1,3-dipolar cycloaddition reaction of azides with alkynes. The structures of the synthesized compounds were elucidated and confirmed by 1H NMR, IR, MS and elemental analysis. All the synthesized compounds were tested for their antimicrobial activity against a series of strains of Bacillus subtilis, Staphylococcus aureus and Escherichia coli for antibacterial activity and against the strains of Candida albicans, Aspergillus flavus and Aspergillus nigar for antifungal activity, respectively.Results and Conclusion:From the antimicrobial data, it was observed that all the newly synthesized compounds showed good to moderate level of antibacterial and antifungal activity.


2020 ◽  
Vol 16 (8) ◽  
pp. 1071-1077
Author(s):  
Aref G. Ghahsare ◽  
Zahra S. Nazifi ◽  
Seyed M.R. Nazifi

: Over the last decades, several heterocyclic derivatives compounds have been synthesized or extracted from natural resources and have been tested for their pharmaceutical activities. Xanthene is one of these heterocyclic derivatives. These compounds consist of an oxygen-containing central heterocyclic structure with two more cyclic structures fused to the central cyclic compound. It has been shown that xanthane derivatives are bioactive compounds with diverse activities such as anti-bacterial, anti-fungal, anti-cancer, and anti-inflammatory as well as therapeutic effects on diabetes and Alzheimer. The anti-cancer activity of such compounds has been one of the main research fields in pharmaceutical chemistry. Due to this diverse biological activity, xanthene core derivatives are still an attractive research field for both academia and industry. This review addresses the current finding on the biological activities of xanthene derivatives and discussed in detail some aspects of their structure-activity relationship (SAR).


Sign in / Sign up

Export Citation Format

Share Document