scholarly journals Summary of the recorded data on the reaction of wild and cultivated grasses to stem rust (Puccinia graminis), leaf rust (P. rubigo-vera), stripe rust (P. glumarum), and crown rust (P. coronata) in the United States and Canada /

1941 ◽  
Author(s):  
George William Fischer ◽  
M. N. Levine ◽  
2007 ◽  
Vol 58 (6) ◽  
pp. 639 ◽  
Author(s):  
B. D. McCallum ◽  
T. Fetch ◽  
J. Chong

The major cereal crops grown in Canada are wheat (11 Mha), barley (4 Mha), and oat (1.5 Mha). Over 90% of the total cereal production area is in the western provinces of Manitoba, Saskatchewan,and Alberta. Historically, the disease of major concern in wheat was stem rust, caused by Puccinia graminis f. sp. tritici. The first significant stem rust resistant cultivar in Canada was Thatcher, grown extensively from 1939 until the early 1970s. The stem rust resistance in Thatcher was relatively effective, with the exception of susceptibility to race 15B epidemic in the 1950s. Thatcher, however, was very susceptible to leaf rust, caused by Puccinia triticina. Over time, improved resistance to both stem and leaf rust was achieved with the release of cultivars with additional genes for resistance, primarily Sr2, Sr6, Sr7a, Sr9b, Lr13, Lr14a, Lr16, and Lr34. Over the years genetic resistance has adequately controlled stem rust but leaf rust continues to cause significant losses, partially due to changes in the P. triticina population which reduced the effectiveness of resistance genes such as Lr13 and Lr16. Stripe rust on wheat, caused by Puccinia striiformis f. sp. tritici, was historically a problem under irrigation in southern Alberta, but since 2000 it has been found annually in the central Canadian prairies and southern Ontario. The genetic basis of resistance to stripe rust in most Canadian wheat cultivars has not been determined, although Yr18 provides partial resistance in many cultivars. In contrast to wheat, rust diseases have generally not caused concern for barley producers. Stem rust, caused by P. graminis f. sp. tritici, is the primary concern for barley growers, and has been controlled through use of gene Rpg1 since 1947. In 1988 race QCCJ with virulence on Rpg1 was detected in the prairie region but to date has not caused significant economic losses in barley. The resistance gene rpg4 is effective against QCCJ, but no commercial varieties have yet been produced with rpg4. In oat, both stem rust, caused by Puccinia graminis f. sp. avenae, and crown rust, caused by Puccinia coronata f. sp. avenae, have caused significant yield losses. Both rusts have been controlled mainly through host resistance and early planting. Stem rust resistance genes Pg2 and Pg13 have been the most effective and occur in many current oat cultivars. However, in 1998, 2 races, NA67 and NA76, with virulence on both Pg2 and Pg13 were detected in the prairie region. Currently, race NA67 is predominant in the prairie region and thus all Canadian cultivars are susceptible to stem rust. Since the 1980s, improved resistance to crown rust has been achieved through use of resistance derived from Avena sterilis. Pc39 was the first of the genes derived from this wild relative to be deployed in a new cultivar, followed by the release of cultivars possessing both Pc38 and Pc39. These 2 genes remained effective until the early 1990s. From 1994 onward, a series of cultivars with the highly effective Pc68 gene introgressed from A. sterilis were released. Virulence to Pc68 appeared in 2001, and in 2005 cultivars with this gene were severely rusted. The cultivar Leggett with Pc68 plus the highly effective Pc94 gene from the diploid A. strigosa was released in 2004. Rhamnus cathartica, the alternate host of P. coronata, is widespread in Canada and removal of these woody shrubs in the vicinity of oat fields is important to reduce the severity of crown rust. The increased use of fungicides on all cereals in the past 10 years has been fairly effective in rust control but represents an added input cost for producers.


Plant Disease ◽  
2018 ◽  
Vol 102 (5) ◽  
pp. 955-963
Author(s):  
Brijesh B. Karakkat ◽  
Vonte L. Jackson ◽  
Paul L. Koch

Crown rust (caused by Puccinia coronata) and stem rust (caused by P. graminis) are two common and destructive diseases of turfgrass in the United States. Crown rust has been associated with perennial ryegrass and stem rust with Kentucky bluegrass when identified based solely on fungal morphology. However, recent studies using molecular identification methods have indicated the host–pathogen relationship of rusts on turf to be more complex. Our primary objective was to quickly and accurately identify P. coronata and P. graminis in symptomatic turfgrass leaves over 3 years on turfgrass samples from across the Midwestern United States. Between 2013 and 2015, 413 samples of symptomatic cool-season turfgrass from Wisconsin and surrounding states were screened using real-time polymerase chain reaction. Of these samples, 396 were Kentucky bluegrass and 17% of them contained P. coronata, 69% contained P. graminis, and 13% contained both P. coronata and P. graminis. In addition, both year and location effects were observed on the distribution of Puccinia spp. collected annually from two locations in southern Wisconsin. This research supports previous conclusions that have identified variability among P. graminis and P. coronata host relationships on turfgrass, and further demonstrates that rust fungal populations on Kentucky bluegrass may not be consistent between locations in the same year or over multiple years at the same location. The increasing evidence of variation in the turfgrass rust populations will likely affect future rust management and turfgrass breeding efforts.


Plant Disease ◽  
2005 ◽  
Vol 89 (2) ◽  
pp. 159-163 ◽  
Author(s):  
P. D. Peterson ◽  
K. J. Leonard ◽  
J. D. Miller ◽  
R. J. Laudon ◽  
T. B. Sutton

A federal and state program operated from 1918 until the 1980s to eradicate common barberry (Berberis vulgaris), the alternate host of Puccinia graminis, from the major areas of cereal production in the United States. Over 500 million bushes were destroyed nationally during the program, approximately 1 million in Minnesota. Some sites in Minnesota where barberry bushes were destroyed remained in the “active” class when eradication was phased out in the 1980s. Active sites were defined as those on which there was still a possibility of emergence of barberry seedlings or sprouts arising from the parent bush. In the present study, from 1998 to 2002, 72 of the approximately 1,200 active sites in Minnesota were surveyed. Areas within 90 m of mapped locations of previously destroyed bushes were searched carefully at each site. Reemerged barberry plants were found on 32 sites. The reproductive status and GPS coordinates were recorded for each reemerged bush. More than 90% of the barberry bushes were found in counties with less than 400 ha of wheat per county, mostly in southeastern Minnesota, but one bush was found in a major wheat-producing county in northwestern Minnesota. Reemergence of barberry may serve as a source of new wheat stem rust races in future epidemics.


1951 ◽  
Vol 29 (3) ◽  
pp. 189-205 ◽  
Author(s):  
J. N. Welsh ◽  
T. Johnson

Resistance to 12 races of oat stem rust was unexpectedly obtained from three crosses, Hajira–Jostrain, Hajira–Richland, and Hajira–Banner, between the years 1932 and 1940. Recent investigations have shown that the Hajira parent was the source of this resistance, as 10% of plants selected from this variety were found to be highly resistant. Inheritance studies have shown that, in some crosses involving this source of resistance, two main genes are involved and in others only a single main gene. A probable explanation is that the highly resistant plants in Hajira may have differed genetically. The studies also reveal that the Hajira type of resistance to race 8, either in the seedling or adult stage, is indicative of resistance to the 12 races that occur in Canada and the United States.


Plant Disease ◽  
2002 ◽  
Vol 86 (6) ◽  
pp. 568-572 ◽  
Author(s):  
D. V. McVey ◽  
D. L. Long ◽  
J. J. Roberts

Wheat stem rust caused negligible yield losses in 1997 and 1998. Overwintering sites were found in central and east-central Louisiana in 1997, and in northwestern Florida, northeastern Louisiana, and central Texas in 1998. Race Pgt-TPMK predominated in 1997 with 69% of 100 isolates with race RCRS next at 11%. In 1998, race RCRS predominated with 55% of 132 isolates, and TPMK occurred at 10%. Race QFCS occurred at 8% in 1997 and 31% in 1998. Races QCCS and QTHJ were found in 1997, and races QFBS, RKMQ, RKQQ, and RCMS were found in 1998. Race QCCJ, virulent to barley with the Rpg1 gene for stem rust resistance, was not found from wheat in 1997 or 1998. No virulence was found to wheat lines with Sr 13, 22, 24, 25, 26, 27, 29, 30, 31, 32, 37, Gt, or Wld-1. Oat stem rust was found earlier in 1997 than 1998, but was more widespread in 1998. Race NA27, virulent to Pg-1, -2, -3, -4, and -8, was the predominant race in the United States in 1997 (79% of 116 isolates) and again in 1998 (79% of 116 isolates). NA16, virulent to Pg-1, -3, and -8, was found in the south (1997 and 1998), and NA5, virulent to Pg-2 and -15, and NA10, virulent to Pg-2, -3, and -15, were found in the west (1997).


1997 ◽  
Vol 87 (9) ◽  
pp. 910-914 ◽  
Author(s):  
A. P. Roelfs ◽  
B. McCallum ◽  
D. V. McVey ◽  
J. V. Groth

Stem rust race Pgt-QCCJ was first found in the Great Plains of the United States in 1989, collected primarily from barley. This race became a major part of the Puccinia graminis f. sp. tritici population, even though it is virulent to only a few hard red winter wheat cultivars in the central Great Plains and to barley in the northern Great Plains. It threatens barley production in the northern Great Plains of the United States and Canada due to virulence to Rpg-1. Six differences in virulence and two in isozyme banding patterns from the most similar stem rust races make it unlikely that QCCJ arose as a mutant. Thus, QCCJ likely arose through sexual or parasexual recombination. Sexual recombination in the Great Plains is unlikely, as it has not been detected in many years. Avirulence to ‘McNair 70l’ is only known from the Pacific Northwest of the United States and adjacent Canada. The rust population in this area is of sexual origin, and the pattern of virulence/avirulence and isozyme banding for QCCJ occurs there. Pgt-QCCJ likely originated in the Pacific Northwest during or before 1989 and was wind-transported into the Great Plains.


Plant Disease ◽  
2005 ◽  
Vol 89 (10) ◽  
pp. 1125-1127 ◽  
Author(s):  
Y. Jin

Stem rust of small grain cereals, caused by Puccinia graminis, is a major disease of wheat, barley, and oat. In order to effectively utilize stem rust resistance in the improvement of small grain cereals, it is necessary to monitor the virulence composition and dynamics in the stem rust population. Races of P. graminis from barberry, wheat, barley, and oat were surveyed across the United States during 2003. Aecial infections on barberry were primarily due to P. graminis f. sp. secalis, as inoculations using aeciospores failed to produce infection on wheat and oat. Race QFCS of P. graminis f. sp. tritici was the most common race identified from wheat and barley. Race QFCS has virulence on stem rust resistance genes Sr5, 8a, 9a, 9d, 9g, 10, 17, and 21 that are used for race identification. Race TTTT was identified in 2003. This race possesses virulence to all 16 stem rust resistance genes present in the wheat stem rust differentials and should be targeted in breeding for stem rust resistance. Race QFCN appeared to be a new race in the U.S. stem rust population. Races QCCJ and MCCF were identified, but at low frequencies. Seven races of P. graminis f. sp. avenae were identified from oat, and races NA-27, NA-29, and NA-67 were the predominant races. Race NA-76 was identified for the first time in the United States.


Plant Disease ◽  
1999 ◽  
Vol 83 (9) ◽  
pp. 871-875 ◽  
Author(s):  
D. V. McVey ◽  
D. L. Long ◽  
J. J. Roberts

Stem rust caused negligible yield losses in 1996 in the United States. Wheat stem rust was first found during the second week of April in a field of soft red winter wheat southwest of Houston, Texas. Race Pgt-TPMK continues to predominate, with 66% of 273 isolates from 100 collections. TPMK represented 76 and 63% of the isolates from wheat in fields and nurseries, respectively. Race QFCS was identified at a frequency of 12 and 29% from farm fields and nurseries, respectively, and 26% overall. Eight other races consisted of 3% or less of the isolates. From barley, race QCCJ, virulent to the Rpg-1 gene for resistance to stem rust, was identified in only 12% of 77 isolates of 27 collections, while TPMK consisted of 64% of the isolates. No virulence was found to wheat lines with genes Sr9b, 13, 22, 24, 25, 26, 27, 29, 30, 31, 32, 37, Gt, or Wld-1. Oat stem rust was first found in late April in southern Louisiana and central Texas. Race NA-27, virulent to Pg-1, -2, -3, -4, and -8, was again the predominant race in the United States, comprising 91% of 93 isolates from 36 collections. NA-5 and NA-16 were the other two races identified, comprising 4% each.


Plant Disease ◽  
2015 ◽  
Vol 99 (9) ◽  
pp. 1261-1267 ◽  
Author(s):  
J. A. Kolmer ◽  
M. E. Hughes

Collections of Puccinia triticina were obtained from rust-infected leaves provided by cooperators throughout the United States and from wheat fields and breeding plots by USDA-ARS personnel and cooperators in the Great Plains, Ohio River Valley, and southeastern states in order to determine the virulence of the wheat leaf rust population in 2013. Single uredinial isolates (490 total) were derived from the collections and tested for virulence phenotype on 20 lines of Thatcher wheat that are near-isogenic for leaf rust resistance genes. In 2013, 79 virulence phenotypes were described in the United States. Virulence phenotypes MBTNB, TNBGJ, and MCTNB were the three most common phenotypes. Phenotypes MBTNB and MCTNB are both virulent to Lr11, and MCTNB is virulent to Lr26. MBTNB and MCTNB were most common in the soft red winter wheat region of the southeastern states and Ohio Valley. Phenotype TNBGJ is virulent to Lr39/41 and was widely distributed throughout the hard red winter wheat region of the Great Plains. Isolates with virulence to Lr11, Lr18, and Lr26 were common in the southeastern states and Ohio Valley region. Isolates with virulence to Lr21, Lr24, and Lr39/41 were frequent in the hard red wheat region of the southern and northern Great Plains.


Plant Disease ◽  
2007 ◽  
Vol 91 (8) ◽  
pp. 979-984 ◽  
Author(s):  
J. A. Kolmer ◽  
D. L. Long ◽  
M. E. Hughes

Collections of Puccinia triticina were obtained from rust-infected wheat leaves by cooperators throughout the United States and from surveys of wheat fields and nurseries in the Great Plains, Ohio River Valley, southeast, California, and Washington State, in order to determine the virulence of the wheat leaf rust population in 2005. Single uredinial isolates (797 in total) were derived from the collections and tested for virulence phenotype on lines of Thatcher wheat that are near-isogenic for leaf rust resistance genes Lr1, Lr2a, Lr2c, Lr3a, Lr9, Lr16, Lr24, Lr26, Lr3ka, Lr11, Lr17a, Lr30, LrB, Lr10, Lr14a, Lr18, Lr21, Lr28, and winter wheat lines with genes Lr41 and Lr42. In the United States in 2005, 72 virulence phenotypes of P. triticina were found. Virulence phenotype TDBGH, selected by virulence to resistance gene Lr24, was the most common phenotype in the United States, and was found throughout the Great Plains region. Virulence phenotype MCDSB with virulence to Lr17a and Lr26 was the second most common phenotype and was found widely in the wheat growing regions of the United States. Virulence phenotype MFPSC, which has virulence to Lr17a, Lr24, and Lr26, was the third most common phenotype, and was found in the Ohio Valley region, the Great Plains, and California. The highly diverse population of P. triticina in the United States will continue to present a challenge for the development of wheat cultivars with effective durable resistance to leaf rust.


Sign in / Sign up

Export Citation Format

Share Document