scholarly journals Optimum Condition Monitoring Technologies for Plane Bearing- Monitoring Technologies Using High Frequency Vibration,Acoustic-emission & Ferro-particulate in Lubricating Oil Main Bearing of Main Diesel Engine

2009 ◽  
Vol 44 (2) ◽  
pp. 199-207 ◽  
Author(s):  
Hiromi Shiihara ◽  
Kazuyuki Okamoto ◽  
Tadahiko Kurosawa
2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Marek Kočiško ◽  
Petr Baron ◽  
Monika Telíšková ◽  
Jozef Török ◽  
Anna Bašistová

The paper presents the results of an experimental study aimed at assessing the correlation between the measurement of dynamic parameters (vibration, high-frequency vibration, and acoustic emission) and the analysis of friction mode and the state of lubrication of the contact surfaces of two gearboxes in the turbo-generator assembly (high-speed single-body steam turbine—gearbox—generator) with the transmission power of no more than 50 MW. The analysis confirmed the assumption of a significant correlation of the monitored high-frequency vibration signal with the unsatisfactory engagement of the gear teeth. Through vibration analysis, an increased level of the tooth vibration component and vibration multiples with increased acoustic emission were identified in gearbox operation. The gear oil of one of the gearboxes examined showed a loss of additive elements in the real operation of the contact surfaces of the teeth engagement. The trend analysis confirmed the complexity of the monitored transmission operation in terms of the friction mode and the influence of the oil quality on the state of the tooth flank microgeometry.


2021 ◽  
Author(s):  
Matheus Marques da Silva ◽  
Constantin Kiesling ◽  
Christof Gumhold ◽  
Sven Warter ◽  
Andreas Wimmer ◽  
...  

Abstract In order to rise to global challenges such as climate change, environmental pollution and conservation of resources, internal combustion engine manufacturers must meet the requirements of substantially reduced emissions of CO2 and other greenhouse gases, zero pollutant emissions and increased durability. This publication addresses approaches that can help improve engine efficiency and durability through the engine crankshaft bearing and lubricant system. An understanding of the operating behavior of key engine components such as crankshaft main bearings in fired engine operation allows the development of appropriate tools for bearing condition monitoring and condition-based maintenance so as to avoid critical engine operation and engine failure as well as unnecessary engine downtime. Such tools are especially important when newly developed low viscosity oils are employed. Though these oils have the potential to reduce friction and to increase engine efficiency, their use comes with a higher risk of accelerated bearing wear and ultimately bearing failure. The specific target of this paper is therefore to obtain detailed knowledge of the influence of engine operating parameters and oil parameters on crankshaft main bearing temperature behavior and engine friction behavior in fired operation as a starting point for condition monitoring and condition-based maintenance approaches and as a basis for improving the bearing and lubricant system as a whole. To achieve this target, experimental investigations were carried out on an engine test bed employing an in-line six-cylinder heavy-duty diesel engine with a displacement of approximately 12.4 dm3. Defined and accurately reproducible engine operating conditions were ensured by comprehensive external conditioning systems for the coolant, lubricating oil, fuel, charge air and ambient air. Since the focus was on investigating the bearing and friction behavior by means of the base engine, several auxiliary systems were removed; these included the lubricating oil and coolant pumps, the front-end accessory drive and the generator. Each crankshaft main bearing was instrumented with a thermocouple on the back of its bottom bearing shell to measure the bearing temperature. Piezoelectric pressure transducers were applied to all six cylinders in order to facilitate the accurate determination of the friction mean effective pressure (FMEP) based on indicated and brake mean effective pressures. The variations in engine operating parameters (engine speed and torque) mainly serve as a reference for the variations in oil parameters. They confirm the existing knowledge that engine speed has a significant impact on FMEP and bearing temperature while the impact of engine torque is comparatively low. The variations in oil parameters reveal that lowering the viscosity grade from SAE 10W-40 to 5W-20 leads to a decrease in both bearing temperature and FMEP, which can be explained by the lower fluid friction in the bearing system and the increased mass flow and convective heat transport with the lower viscosity oil. An increase in the lubricating oil temperature at the engine inlet leads to a significant increase in bearing temperature and a decrease in FMEP; the former is explained by the increased heat influx from the lubricant oil, and the latter is caused mainly by the temperature dependency of the lubricant oil viscosity and its impact on fluid friction. The impact of engine oil inlet pressure on bearing temperature and FMEP is generally found to be low. The results will serve as the basis for future research that includes approaches to condition monitoring and evaluating improved engine operating strategies with regard to oil parameters.


2012 ◽  
Vol 224 ◽  
pp. 217-220
Author(s):  
Yong Guo Zhang ◽  
Xu Feng Jiang ◽  
Xiao Wen Wu ◽  
Zong Ying

In order to verify the validity of oil analysis for heavy diesel engine condition monitoring, the lubricating oil were sampled from the lubricating system of the domestic diesel engines, and then were tested by oil analysis (including contamination detection, periodic sampling test and ferrography technology). The results showed that oil analysis could monitor the lubricating oil contamination and mechanical wear condition to make diesel engines avoid early mechanical failure.


Vibration ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 263-283
Author(s):  
Manuel Medina-Arenas ◽  
Fabian Sopp ◽  
Johannes Stolle ◽  
Matthias Schley ◽  
René Kamieth ◽  
...  

Mechanical seals play an important role in the reliability of a process. Currently, the condition monitoring of mechanical seals is restricted due to the limitations of the traditional monitoring methods, including classical vibration analysis. For this reason, the objective of the present work is the detection and analysis of friction mechanisms inside a mechanical seal that are unfavorable and induce fault conditions using the acoustic emission technique, which allows the measurement of high-frequency vibrations that arise due to material fatigue processes on a microscopic scale. For this purpose, several fault condition modes were induced on a test rig of an agitator vessel system with a double-acting mechanical seal and its buffer fluid system. It was possible to detect the presence of inadequate friction mechanisms due to the absence and limited use of lubrication, as well as the presence of abrasive wear, by measuring a change in the properties of the acoustic emissions. Operation under fault condition modes was analyzed using the acoustic emission technique before an increase in the leakage rate was evaluated using traditional monitoring methods. The high friction due to the deficient lubrication was characterized by a pattern in the high-frequency range that consisted of the harmonics of a fundamental frequency of about 33 kHz. These results demonstrate the feasibility of a condition monitoring system for mechanical seals using the acoustic emission technique.


Volume 3 ◽  
2004 ◽  
Author(s):  
A. Albarbar ◽  
R. Gennish ◽  
F. Gu ◽  
A. Ball

Modern diesel engine maintenance programs incorporate various methods and techniques for early fault detection and diagnosis to maintain efficiency, low pollution and high reliability and to avoid catastrophic failures. This study has been conducted aiming at engine oil condition monitoring and quality evaluation by analysing the engine block vibration and its induced noise. The vibration signals were measured using an accelerometer mounted on the thrust side of the first cylinder in a four cylinder diesel engine, and the noise was recorded using a microphone facing the cylinder. The signals are then band pass filtered and transformed to the frequency domain, where the amplitudes of the different frequency components of the vibration and noise waveforms are analysed and compared to the vibration and noise baseline signatures. The mean amplitudes of the spectral components in the frequency band 900 Hz to 2.5 kHz were found linearly proportional to the engine speed and load. It was also found that the RMS values of this frequency band are affected by the oil viscosity. These results show that it is possible to use vibration and airborne acoustics to predict the quality of lubrication.


Sign in / Sign up

Export Citation Format

Share Document