scholarly journals Impact of nano-chelated micronutrients and biological fertilizers on growth performance and grain yield of maize under deficit irrigation condition

Biologija ◽  
2016 ◽  
Vol 62 (2) ◽  
Author(s):  
Mohsen Janmohammadi ◽  
Azra Navid ◽  
Asghar Ebadi Segherloo ◽  
Naser Sabaghnia

Sustainable crop production is required for the semi-arid areas, and it will be achieved by the wise use of several production inputs which must be tailored to the unique conditions of each district. Effective nutrient management and irrigation are just two parts of the  crop production puzzle. It seems that nano-fertilizers may have high potential for achieving sustainable crop production. A field experiment was carried out to investigate the effect of adding different fertilizers on maize (S.C 704 Hybrid) growth under various irrigation regimes in Moghan, northwest of Iran. The experiment included three irrigation levels (up to ~100, ~50, and ~25% field capacity) which were applied from the beginning of the reproductive period. During the vegetative period, all plants were fully irrigated. Fertilizer treatments included control (no-fertilizer application), N  biofertilizer, P  biofertilizer, nano-chelated  B, nano-chelated  Zn, complete nanofertilizer, and bulk NPK fertilizer. Investigation of morphophysiological traits such as leaf area, ear length, ear diameter, relative water content, and chlorophyll content revealed that application of complete micronutrients, bulk NPK, and nano-chelated Zn significantly improved these traits over the control. A similar status was recorded for grain yield and yield components. Results indicated that although irrigation up to ~25% of field capacity (FC) reduced the grain yield compared to the control, there was not observed any significant difference between normal irrigation and ~50% FC. The best plant performance was recorded for plants grown by complete nanofertilizer under optimum or ~50% FC. Deficient irrigation up to ~50% FC could be assigned as an appropriate water management strategy in semi-arid regions to minimize water losses through evaporation and achieve higher water use efficiency. In conclusion, a combination of precision deficient irrigation and application of nanofertilizers play a critical role for enhancing the efficient use of water and improving the productivity of maize production systems in Mediterranean semi-arid regions.

2021 ◽  
Vol 23 (09) ◽  
pp. 1263-1269
Author(s):  
Deepika R ◽  
◽  
Swaminathan C ◽  
Kannan P ◽  
Sathyamoorthy NK ◽  
...  

Nutri-millets offer copious micronutrients like vitamins, beta-carotene etc. In this present day, all the millets are amazingly superior and are therefore, the result for the malnutrition and obesity that affects a vast majority of the Indian population. They have numerous beneficial properties like drought resistant, good yielding in areas where water is limited and they possess good nutritive values. The prospective water scarcity in semi-arid regions disturbs both normal as well as managed environments, which limits the cultivation of crops, fodder, and other plants. The issues faced by the rain-dependent farming of these semi-arid regions are primarily the unpredictability of the monsoon. Probability analysis of rainfall events are believed to contribute in deciding sowing dates for the current season and for successful crop production in semi-arid environments. The present study was carried out in semi-arid condition to quantify the performance of nutri-millets in the rain dependent farming. The experiment was laid out under factorial randomized block design with 3 replications. The treatments comprises of crop factor viz., Sorghum [Sorghum bicolor (L.) Moench] (C1) and, little millet [Panicum sumatrense Roth ex Roem. & Schult] (C2) and sowing window factor viz., sowing based farmer’s practice (M1) i.e. on 31st standard meteorological week (SMW); Sowing at 33rd SMW based on 50% rainfall probability (M2); Sowing at 38th SMW based on 75% rainfall probability (M3), Sowing window as per the current weather forecast, for this season on 35th SMW (M4).It is evident from the study that Sowing sorghum at 38th standard meteorological week based on 75% rainfall probability recorded higher grain yield, rain water use efficiency with elevated iron and calcium content. This shows that different sowing dates have significant influence on grain yield and quality of nutri-millets.


2019 ◽  
Vol 14 (8) ◽  
pp. 085004 ◽  
Author(s):  
Jo Smith ◽  
Dali Nayak ◽  
Fabrizio Albanito ◽  
Bedru Balana ◽  
Helaina Black ◽  
...  

2012 ◽  
pp. 89-93
Author(s):  
Tamás Árendás ◽  
Zoltán Berzsenyi ◽  
Péter Bónis

The effect of crop production factors on the grain yield was analysed on the basis of three-factorial experiments laid out in a split-split-plot design. In the case of maize the studies were made as part of a long-term experiment set up in 1980 on chernozem soil with forest residues, well supplied with N and very well with PK. The effects of five N levels in the main plots and four sowing dates in the subplots were compared in terms of the performance of four medium early hybrids (FAO 200). In the technological adaptation experiments carried out with durum wheat, the N supplies were moderate (2010) or good (2011), while the P and K supplies were good or very good in both years. Six N top-dressing treatments were applied in the main plots and five plant protection treatments in the subplots to test the responses of three varieties. The results were evaluated using analysis of variance, while correlations between the variables were detected using regression analysis.The effect of the tested factors on the grain yield was significant in the three-factorial maize experiment despite the annual fluctuations, reflected in extremely variable environmental means. During the given period the effect of N fertilisation surpassed that of the sowing date and the genotype. Regression analysis on the N responses for various sowing dates showed that maize sown in the middle 10 days of April gave the highest yield, but the N rates required to achieve maximum values declined as sowing was delayed. In the very wet year, the yield of durum wheat was influenced to the greatest extent by the plant protection treatments, while N supplies and the choice of variety were of approximately the same importance.  In the favourable year the yielding ability was determined by topdressing and the importance of plant protection dropped to half,  while no  significant difference could be detected between the tested varieties. According to the results of regression analysis, the positive effect of plant protection could not be substituted by an increase in the N rate in either year. The achievement of higher yields was only possible by a joint intensification of plant protection and N fertilisation. Nevertheless, the use of more efficient chemicals led to a slightly, though not significantly, higher yield, with a lower N requirement. 


Genetika ◽  
2013 ◽  
Vol 45 (3) ◽  
pp. 691-701 ◽  
Author(s):  
Naser Sabaghnia ◽  
Mohtasham Mohammadi ◽  
Rahmatollah Karimizadeh

Multi-environmental trials have significant main effects and significant multiplicative genotype ? environment (GE) interaction effect. Principal coordinate analysis (PCOA) offers a more appropriate statistical analysis to deal with such situations, compared to traditional statistical methods. Eighteen bread wheat genotypes were grown in four semi-arid regions over three year seasons to study the GE interaction and yield stability and obtained data on grain yield were analyzed using PCOA. Combined analysis of variance indicated that all of the studied effects including the main effects of genotype and environments as well as the GE interaction were highly significant. According to grand means and total mean yield, test environments were grouped to two main groups as high mean yield (H) and low mean yield (L). There were five H test environments and six L test environments which analyzed in the sequential cycles. For each cycle, both scatter point diagram and minimum spanning tree plot were drawn. The identified most stable genotypes with dynamic stability concept and based on the minimum spanning tree plots and centroid distances were G1 (3310.2 kg ha-1) and G5 (3065.6 kg ha-1), and therefore could be recommended for unfavorable or poor conditions. Also, genotypes G7 (3047.2 kg ha-1) and G16 (3132.3 kg ha-1) were located several times in the vertex positions of high cycles according to the principal coordinates analysis. The principal coordinates analysis provided useful and interesting ways of investigating GE interaction of barley genotypes. Finally, the results of principal coordinates analysis in general confirmed the breeding value of the genotypes, obtained on the basis of the yield stability evaluation.


2021 ◽  
Vol 97 (4) ◽  
Author(s):  
Doreen Babin ◽  
Loreen Sommermann ◽  
Soumitra Paul Chowdhury ◽  
Jan H Behr ◽  
Martin Sandmann ◽  
...  

ABSTRACT A better understanding of factors shaping the rhizosphere microbiota is important for sustainable crop production. We hypothesized that the effect of agricultural management on the soil microbiota is reflected in the assemblage of the rhizosphere microbiota with implications for plant performance. We designed a growth chamber experiment growing the model plant lettuce under controlled conditions in soils of a long-term field experiment with contrasting histories of tillage (mouldboard plough vs cultivator tillage), fertilization intensity (intensive standard nitrogen (N) + pesticides/growth regulators vs extensive reduced N without fungicides/growth regulators), and last standing field crop (rapeseed vs winter wheat). High-throughput sequencing of bacterial and archaeal 16S rRNA genes and fungal ITS2 regions amplified from total community DNA showed that these factors shaped the soil and rhizosphere microbiota of lettuce, however, to different extents among the microbial domains. Pseudomonas and Olpidium were identified as major indicators for agricultural management in the rhizosphere of lettuce. Long-term extensive fertilization history of soils resulted in higher lettuce growth and increased expression of genes involved in plant stress responses compared to intensive fertilization. Our work adds to the increasing knowledge on how soil microbiota can be manipulated by agricultural management practices which could be harnessed for sustainable crop production.


Author(s):  
Elizabeth Temitope Alori ◽  
Obianuju Chiamaka Emmanuel ◽  
Bernard R. Glick ◽  
Olubukola Oluranti Babalola

2017 ◽  
Vol 101 (2) ◽  
pp. 185-202
Author(s):  
Johanie Rivera-Zayas ◽  
David Sotomayor-Ramírez ◽  
Ricardo Barnes

Nitrogen (N) is possibly the most limiting nutrient for crop production on the southern semi-arid coast of Puerto Rico. In efforts to improve inbred maize (Zea mays L.) grain yield, fertilizer N is sometimes aggressively managed. In this paper, we report on the results of a field experiment that evaluated the effect of six rates of fertilizer N (0, 34, 68,102,135 and 203 kg N/ha) and of cowpea (Vigna unguiculata cv. Iron-clay), planted as a cover crop during the offseason, on inbred maize grain yield. The soil was Jacaguas series (Loamy-skeletal, mixed, superactive, isohyperthermic Fluventic Haplustolls) on the Dow Agrosciences experimental farm in Santa Isabel, Puerto Rico. Cowpea was planted on 13 July 2013 and incorporated into the soil on 20 September 2013. An inbred maize line was planted on 19 December 2013 and harvested on 19 March 2014 at a plant density of 51,645 plants per hectare. Irrigation was provided via drip system, and fertilizer N was applied at three different stages during the growing season: at emergence, 21 and 37 days after planting. Measurements of plant height, chlorophyll readings using SPAD-502® and GreenSeeker®, and leaf N concentration were used as indicators of treatment response and N sufficiency. The maximum grain yield of 2,918 kg/ha was attained with the fertilizer N rate of 68 kg N/ha. The cowpea cover crop rotation did not affect grain yield (P>0.05). Plant height, and measurements by SPAD-502® and GreenSeeker® provided adequate indicators of crop N sufficiency during the vegetative stages V6 to V12, with optimum values of 149 cm, 46, and 0.67 NDVI, respectively, 52 days after planting with an application of 68 kg N/ ha. Crop response to fertilizer N occurred at a lower rate than in previous studies and those occurring under conventional commercial conditions. Other factors related to fertilizer N management, such as sources, placement and timing of application might be as important for grain yield improvement of inbred maize.


Sign in / Sign up

Export Citation Format

Share Document