scholarly journals Three-Dimensional Analysis of Temperature Distribution in A Geothermal Area Using Well-Logging Data Set.

2004 ◽  
Vol 15 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Setsuro MATSUDA ◽  
Katsuaki KOIKE
Author(s):  
S. Naka ◽  
R. Penelle ◽  
R. Valle

The in situ experimentation technique in HVEM seems to be particularly suitable to clarify the processes involved in recrystallization. The material under investigation was unidirectionally cold-rolled titanium of commercial purity. The problem was approached in two different ways. The three-dimensional analysis of textures was used to describe the texture evolution during the primary recrystallization. Observations of bulk-annealed specimens or thin foils annealed in the microscope were also made in order to provide information concerning the mechanisms involved in the formation of new grains. In contrast to the already published work on titanium, this investigation takes into consideration different values of the cold-work ratio, the temperature and the annealing time.Two different models are commonly used to explain the recrystallization textures i.e. the selective grain growth model (Beck) or the oriented nucleation model (Burgers). The three-dimensional analysis of both the rolling and recrystallization textures was performed to identify the mechanismsl involved in the recrystallization of titanium.


Author(s):  
J. K. Samarabandu ◽  
R. Acharya ◽  
D. R. Pareddy ◽  
P. C. Cheng

In the study of cell organization in a maize meristem, direct viewing of confocal optical sections in 3D (by means of 3D projection of the volumetric data set, Figure 1) becomes very difficult and confusing because of the large number of nucleus involved. Numerical description of the cellular organization (e.g. position, size and orientation of each structure) and computer graphic presentation are some of the solutions to effectively study the structure of such a complex system. An attempt at data-reduction by means of manually contouring cell nucleus in 3D was reported (Summers et al., 1990). Apart from being labour intensive, this 3D digitization technique suffers from the inaccuracies of manual 3D tracing related to the depth perception of the operator. However, it does demonstrate that reducing stack of confocal images to a 3D graphic representation helps to visualize and analyze complex tissues (Figure 2). This procedure also significantly reduce computational burden in an interactive operation.


Author(s):  
Weiping Liu ◽  
John W. Sedat ◽  
David A. Agard

Any real world object is three-dimensional. The principle of tomography, which reconstructs the 3-D structure of an object from its 2-D projections of different view angles has found application in many disciplines. Electron Microscopic (EM) tomography on non-ordered structures (e.g., subcellular structures in biology and non-crystalline structures in material science) has been exercised sporadically in the last twenty years or so. As vital as is the 3-D structural information and with no existing alternative 3-D imaging technique to compete in its high resolution range, the technique to date remains the kingdom of a brave few. Its tedious tasks have been preventing it from being a routine tool. One keyword in promoting its popularity is automation: The data collection has been automated in our lab, which can routinely yield a data set of over 100 projections in the matter of a few hours. Now the image processing part is also automated. Such automations finish the job easier, faster and better.


Sign in / Sign up

Export Citation Format

Share Document