scholarly journals Analysis and Design of the Interface Inductor and the DC Side Capacitor in a STATCOM with Phase and Amplitude Control Considering the Stability of the System

2012 ◽  
Vol 12 (1) ◽  
pp. 193-200 ◽  
Author(s):  
Guopeng Zhao ◽  
Minxiao Han ◽  
Jinjun Liu

KURVATEK ◽  
2018 ◽  
Vol 3 (1) ◽  
pp. 21-34
Author(s):  
Untung Wahyudi ◽  
Excelsior T P ◽  
Luthfi Wahyudi

PT. Putera Bara Mitra used open mining system for mining operation, Yet the completion of study on the end wall slope stability that  undertaken by geotechnical PT. Putera Bara Mitra in Northwest Pit and the occured a failure in the low wall on the 1st June 2012 led to the need for analysis and design the overall slope at the mine site. To analyze and design the overall slope, used value of the recommended minimum safety. The value was based on company for single slope SF ≥ 1.2 and SF ≥ 1.3 for overall slope. The calculation used Bichop method with the help of software slide v 5.0. Geometry improvements was done at the low slopes that originally single wall with a 30 m bench height and a slope 70° with SF = 0.781, into 4 levels with SF = 1.305. The analysis explained the factors that affect the stability of the low wall included the mining slope geometry, unfavorable drainase system, material stockpiles and seismicity factors. It was necessary to do prevention efforts to maintain the stability of the slope included the redesign to slope geometry, handling surface and subsurface water in a way to control slopes draining groundwater, vegetation stabilization using and monitoring slope using Total Station with Prism and Crackmeter to determine the movement of cracks visible on the surface. 



2018 ◽  
Vol 86 (1) ◽  
Author(s):  
Ming Li ◽  
Hao Li ◽  
Fengwei Li ◽  
Zhan Kang

The competition between the structural rigidity and the van der Waals interactions may lead to collapsing of aligned nanotubes, and the resulting changes of both configurations and properties promise the applications of nanotubes in nano-composites and nano-electronics. In this paper, a finite-deformation model is applied to study the adhesion of parallel multiwall nanotubes with both partial and full collapsing, in which the noncontact adhesion energy is analytically determined. The analytical solutions of both configurations and energies of collapsed nanotubes are consistent with the molecular dynamics (MD) results, demonstrating the effectiveness of the finite-deformation model. To study the critical conditions of generating the partially and fully collapsed multiwall nanotubes, our analytical model gives the predictions for both the geometry- and energy-related critical diameters, which are helpful for the stability analysis and design of nanotube-based nano-devices.



2014 ◽  
Vol 496-500 ◽  
pp. 728-732
Author(s):  
Yean Der Kuan ◽  
Jing Yi Chang ◽  
Min Shiang Huang ◽  
Yen Yao Chu ◽  
Yan Ci Chen ◽  
...  

The main content of this paper is to design and fabricate a type of surveillance ship with a proton exchange membrane fuel cell (PEMFC), which adopts hydrogen as fuel cell to generate electricity to drive the surveillance ship. This ship has devices of reconnaissance, lighting, shooting. The reconnaissance device could return real-time images to the command center via cloud technique which could understand the current situation of the reconnaissance location. A buoyancy device is designed into the hull to enhance the stability of running. This paper starts from the functional design and system evaluation, then conducts the fabrication and assembly of the surveillance ship, and finally makes the electric integration and the tests of the PEMFC, surveillance ship running, and hydrogen consumption. The results of the research shows the developed surveillance ship has the advantages of low pollution, clean energy, no effect of day and night, and could be driven via only a small amount of hydrogen, which meets the trend of environmental protection and has the potential of applications in the future.



2018 ◽  
Vol 30 (6) ◽  
pp. 950-957
Author(s):  
Shuhui Bi ◽  
Lei Wang ◽  
Shengjun Wen ◽  
Liyao Ma ◽  
◽  
...  

Smart material-based actuators and sensors have been widely used in practice owing to their various advantages. However, in the working process of these actuators and sensors, their output responses always deduce non-smooth nonlinear constraints. The constraint resulting from the actuator is called the input constraint and the constraint caused by the sensor is called the output constraint. These input and output constraints may induce inaccuracies and oscillations, severely degrading system performance. Therefore, the input and output constraints brought about by actuators and sensors should be considered in control system design. In this paper, system analysis for a nonlinear system with input and output constraints will be considered. The effect from the input constraint to the internal signal in the control system will be discussed. Moreover, the influence of the output constraint on the whole system will be studied. Further, the sufficient conditions for maintaining the stability of the system are obtained. Then, by using the robust right coprime factorization approach, an operator-based internal model like control structure is proposed for mitigating the input and output constraints. Finally, the effectiveness of the proposed design scheme will be confirmed through numerical simulation.



2002 ◽  
Vol 20 (1) ◽  
pp. 56 ◽  
Author(s):  
S Prakash ◽  
J Vanualailai ◽  
T Soma

One of the classical problems in nonlinear control system analysis and design is to find a region of asymptotic stability by the Direct Method of Lyapunov. This paper tentatively shows, via a numercial example, that this problem can be easily solved using Quantifier Elimination (QE). In particular, if the governing equations are described by differential equations containing only polynomials, then the problem can be conveniently solved by a computer algebra software packages such as Qepcad or Redlog. In our case study, we use a simple Lyapunov function and Qepcad to estimate the stability region, and the results are verified by an optimization method based on Lagrange's method.





Author(s):  
O Polach

New railway vehicle concepts with broader and shorter carbodies necessitate new running gear concepts. One of the possibilities, the single-axle running gear, offers several advantages. The disadvantage of the conventional single-axle running gear during curving can be counteracted with a simple coupling between the single-axle running gears of the neighbouring carbodies. This paper presents parameter analysis and design principle of the coupled single-axle running gears. They can be constructed for an almost ideal curve negotiation in a great range of curve radii. The coupling of the running gears not only improves the running characteristics in a curve but also increases the stability limit. Bombardier Transportation Winterthur has developed the coupled single-axle running gears called FEBA. The test runs with prototype as well as with serial running gears in the Norwegian commuter train Class 72 have fully confirmed the anticipated running characteristics.



2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Minsong Zhang ◽  
Fu Chen

This paper considers the stability problem for nonlinear quadratic systems with nested saturation input. The interesting treatment method proposed to nested saturation here is put into use a well-established linear differential control tool. And the new conclusions include the existing conclusion on this issue and have less conservatism than before. Simulation example illustrates the effectiveness of the established methodologies.



2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Shunli Zhao ◽  
Xunhe Yin ◽  
Xueye Wei

Network-based control systems have been emerging technologies in control and computer communication fields over the past decade. This paper focuses on the analysis and design of network-based control systems with binary modulation. First, it is shown that different modulations can result in different delays which are inevitable in network-based control systems. The delay can be seen as constant delay when the transmission time is the main consideration. Second, channel noise can result in bit error while bit error is seen as active packet loss in this paper, in this context, the conditions of signal-to-noise ratio (SNR) for binary modulation that can guarantee the stability of systems are obtained according to the proposed algorithm. Third, the system with delay and noisy communication can be modeled as an asynchronous dynamic system (ADS); in addition, the stability is analyzed and controller is designed in terms of Lyapunov function and linear matrix inequality (LMI) scheme. Finally, without loss of generality, numerical simulation demonstrates the effectiveness of the proposed scheme and designed controller based on binary amplitude shift keying (2ASK) modulation.



2014 ◽  
Vol 1008-1009 ◽  
pp. 556-561
Author(s):  
Xing Yang ◽  
Xiang Shun Li

Aiming at the problem that sail-assisted ship is easy to yaw because of sail’s lateral force and adjusts its course slowly due to wind, wave and other interferences on the sea, this paper put forward a feedforward feedback control method based on fuzzy system. According to the relationship between lateral force and yaw angle, a feedforward controller was designed to offset the yaw of ship. In order to correct the drift angle of ship automatically, the feedback controller was fulfilled to track the given course. Feedback control loop adopted fuzzy self-adjusting PD controller to make the drift angle be adjusted in time. The simulations indicate that the feedforward feedback control can suppress the disturbance produced by lateral force effectively, enhance the stability of the system and accelerate the response speed.



Sign in / Sign up

Export Citation Format

Share Document