scholarly journals Allelic status of PavCNR12 gene in Ukrainian sweet cherry (Prunus avium L.) cultivars

2017 ◽  
Vol 15 (1) ◽  
pp. 40-46 ◽  
Author(s):  
Ya. I. Ivanovych ◽  
R. A. Volkov

Aim. In recent decades, Ukrainian breeders have created a large number of sweet cherry cultivars. Further progress in the breeding of sweet cherry requires a broad involvement of molecular methods. Especially important is the development of methods for the identification of genes / alleles that control economically valuable traits. The goal of the study was to develop a new method for discrimination of alleles of the PavCNR12 gene, which controls the fruit size in sweet cherry, and to reveal the allelic status of PavCNR12 in Ukrainian sweet cherry cultivars. Methods. The SNP-polymorphisms in the promoter regions of the PavCNR12-1, -2 and -3 alleles was detected applying comparison of published sequences. PCR amplification of the region was conducted, the obtained PCR products were cut by TaiI restriction endonuclease and separated by electrophoresis in a polyacrylamide gel. The identity of PCR products was confirmed by direct sequencing. Results. A new convenient method for the identification of allelic variants of the PavCNR12 gene using CAPS-markers is proposed. Using the method the allelic status of PavCNR12 in 56 sweet cherry cultivars of Ukrainian and foreign breeding was elucidated. Conclusions. A significant prevalence of the desirable allele PavCNR12-1 over the alleles PavCNR12-2 and -3 was found among the studied cultivars.Keywords: Ukrainian sweet cherry cultivars, genetic control of fruit size, alleles of PavCNR12 gene, CAPSmarkers, Prunus avium.

2018 ◽  
Vol 15 (2) ◽  
pp. 150-158
Author(s):  
Ya. I. Ivanovych ◽  
N. V. Tryapitsyna ◽  
K. M. Udovychenko ◽  
R. A. Volkov

Aim. Ukrainian breeders have created a large number of sweet cherry cultivars, which still remain almost unexplored at the molecular level. The aim of our study was to identify the self-incompatibility alleles (S-alleles) in Ukrainian sweet cherry cultivars and landraces, and to elucidate, to which cross-incompatibility group the cultivars belong. Methods. The PCR was conducted using consensus primers to the first and second introns of S-RNAse gene and to the single intron of SFB gene. The electrophoretic analysis of the PCR products of the second intron of S-RNAse was carried out in agarose gel, whereas detection of fluorescently labeled DNA fragments of the first S-RNAse intron and the SFB intron was performed using a genetic analyzer. Results. The S-alleles of 25 Ukrainian sweet cherry cultivars and 10 landraces were identified. The S-alleles frequencies and affiliation of cultivars and landraces to the groups of cross-incompatibility were determined. The obtained data can be used in breeding programs and by planning of industrial plantings. Conclusions. In the study, 12 different S-alleles and 79 S-haplotypes were identified. The S1, S3, S4, S5, S6 and S9 alleles are the most widespread among Ukrainian sweet cherry cultivars and landraces. The high frequencies of S5 and especially of S9 alleles are characteristic for the Ukrainian cultivars and distinguish them from other European ones. For the Ukrainian sweet cherry cultivars, the XXXVII (S5S9) cross-incompatibility group appeared to be the most numerous.Keywords: Ukrainian sweet cherry cultivars, S-locus, Sgenotypes, self- and cross-incompatibility, Prunus avium.


Author(s):  
Ioana Virginia Berindean ◽  
Elena Tămaş ◽  
Oana Maria Toderic ◽  
Ioan Zagrai

Sweet cherry (Prunus avium L.), originated around the Caspian and Black Sea, is an important fruit tree species of economic interest, and hence, breeding and conservation are requested (. Genetic analysis at the molecular level can be used effectively to study molecular polymorphism existing between intraspecific and interspecific tree species and phylogenetic relationships between them and their hybrids. The purpose of this study was to characterize and determine genetic relationships among the sweet cherry native genotypes belonging to Fruit Research & Development Station Bistrita, Romania, using RAPD markers. To eliminate the existence of possible synonyms from national romanian collection, we collect four Van cultivars, from four different national collection. For molecular analysis of the 16 varieties of sweet cherry were considered 13 RAPD primers selected from the literature. They were later used to determine the genetic variability at the molecular level using PAST program, and the dendrogram was generated based on Jaccard’s genetic distance. The dendrogram constructed by PAST software. The quantity and quality of the DNA obtained was suitable to achieve PCR amplification step. Only seven out of the 13 RAPD primers have generate polymorphic bands. The rest of seven were monomorphics. The most polymorphic primer was OPB10 which generated 11 bands from which 100% were polymorphic.Seven RAPD primers generated a high level of polymorphism which allowed to divide these cherry varieties into two groups according to their genetic geographical origin and the pedigree.


2021 ◽  
Author(s):  
Alice Ann Wright ◽  
Madalyn K Shires ◽  
Christopher Beaver ◽  
Garrett Bishop ◽  
S. Tianna Dupont ◽  
...  

In sweet cherry (Prunus avium L.), infection by Candidatus Phytoplasma pruni results in small fruit with poor color and taste, rendering the fruit unmarketable. Yet, the disease pathology is poorly understood, particularly at the cultivar level. Therefore, in this study we examined the physiological effects of Ca. P. pruni infection across a range of cultivars and locations within eastern Washington. We found that infection could be separated into early and established stages based on pathogen titer, that correlated with disease severity, including fruit size, color, and sugar and metabolite content. Furthermore, we also observed that the effects of early-stage infections were largely indistinguishable from healthy, uninfected plants. Cultivar and location-specific disease outcomes were observed with regards to size, color, sugar content, and citric acid content. This study presents the first in-depth assessment of X-disease symptoms and biochemical content of fruit from commercially grown sweet cherry cultivars known to be infected with Ca. P. pruni.


1984 ◽  
Vol 64 (1) ◽  
pp. 211-214 ◽  
Author(s):  
W. DAVID LANE ◽  
HANS SCHMID

Lapins and Sunburst are new self-compatible, dark fleshed sweet cherry cultivars named by Agriculture Canada Research Station, Summerland, British Columbia. Lapins matures late in the cherry season and has outstanding split resistance combined with other desirable fruit and tree characteristics. Testing to date has shown it to be better than presently grown cultivars. Sunburst is an early cultivar ripening in Bing season and is outstanding because of very large fruit size and very heavy yields. It should be a suitable cultivar in locations where fruit set is a problem and lengthy storage is not required.Key words: Prunus avium, self-compatible, split resistance, cultivar description


Author(s):  
K. Hrotkó ◽  
L. Magyar ◽  
S. Hoffman ◽  
M. Gyeviki

During 2000 and 2007, rootstocks of different vigor have been tested in a high density sweet cherry orchard with 'Vera '® and 'Axel'® cultivars at 4 x 2 meter row and plant distance. Trees are trained to Hungarian Spindle with permanent basal branches; in the alley way naturally grown grass is managed by mowing. The first considerable fruiting was in 2004. Every year we measured trunk and canopy parameters of the trees, productivity and fruit size. Our conclusion is that the rootstocks considerably affected the growth, precocity, as well as tree and orchard productivity, fruit weight of sweet cherry cultivars, but these rootstock effects are modified by cultivars, except for growth vigor. According to our results Cema, SL 64, and Bogdany are vigorous rootstocks, moderate vigorous are MaxMa 97, Pi-Ku I , and Tabel® Edabriz, Gisela® 5 and Prob are dwarfing rootstocks. Besides the precocious Gisela® 5 also mahaleb rootstocks CEMA, Bogdany and SL 64 showed considerable precocity, which can be explained by the larger bearing surface to the time of turning to bearing, and a similar or relative large density of burse shoots on fruiting branches. Cumulative yield of 'Axel'® was the highest on Bogdany and on Cerna, contrary to Gisela® 5, which produced only 50% of the previous ones. Cumulative yield of 'Vera'® was the highest on SL 64, and no significant difference was found, compared to trees on rootstocks Cema, Bogdany and Pi-Ku I . Cumulative yield production of trees was smaller on Gisela® 5, Prob, Max Ma 97 and Tabel® Edabriz rootstocks. Corresponding to the literature data of yield efficiency calculated on TCSA basis was highest on Gisela® 5 rootstock. but the efficiency calculated on canopy volume of 'Axel•® trees was similarly high on CEMA and Bogdany, and that of 'Vera'® trees relatively high on CEMA, Bogdany, SL 64 and PiKu I rootstocks. When calculating orchard efficiency al spacing 4 x 2 meters (1250 tree/ha), we received highest yield values on Bogdany, CEMA, SL 64, and PiKu I rootstocks, with large fruit weight. Rootstocks also affect fruit weight. We measured the largest fruit weight on trees on Bogdany.


2007 ◽  
Vol 132 (5) ◽  
pp. 697-703 ◽  
Author(s):  
James W. Olmstead ◽  
Amy F. Iezzoni ◽  
Matthew D. Whiting

Understanding the genetic control of fruit size in sweet cherry (Prunus avium L.) is critical for maximizing fruit size and profitable fresh market production. In cherry, coordinated cycles of cell division and expansion of the carpel result in a fleshy mesocarp that adheres to a stony endocarp. How these structural changes are influenced by differing genetics and environments to result in differing fruit sizes is not known. Thus, the authors measured mesocarp cell length and cell number as components of fruit size. To determine the relative genotypic contribution, five sweet cherry cultivars ranging from ≈1 to 13 g fresh weight were evaluated. To determine the relative environmental contribution to fruit size, different-size fruit within the same genotype and from the same genotype grown in different environments were evaluated. Mesocarp cell number was the major contributor to the differences in fruit equatorial diameter among the five sweet cherry cultivars. The cultivars fell into three significantly different cell number classes: ≈28 cells, ≈45 cells, and ≈78 cells per radial mesocarp section. Furthermore, mesocarp cell number was remarkably stable and virtually unaffected by the environment as neither growing location nor physiological factors that reduced final fruit size significantly altered the cell numbers. Cell length was also significantly different among the cultivars, but failed to contribute to the overall difference in fruit size. Cell length was significantly influenced by the environment, indicating that cultural practices that maximize mesocarp cell size should be used to achieve a cultivar's fruit size potential.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
José Quero-García ◽  
Philippe Letourmy ◽  
José Antonio Campoy ◽  
Camille Branchereau ◽  
Svetoslav Malchev ◽  
...  

AbstractRain-induced fruit cracking is a major problem in sweet cherry cultivation. Basic research has been conducted to disentangle the physiological and mechanistic bases of this complex phenomenon, whereas genetic studies have lagged behind. The objective of this work was to disentangle the genetic determinism of rain-induced fruit cracking. We hypothesized that a large genetic variation would be revealed, by visual field observations conducted on mapping populations derived from well-contrasted cultivars for cracking tolerance. Three populations were evaluated over 7–8 years by estimating the proportion of cracked fruits for each genotype at maturity, at three different areas of the sweet cherry fruit: pistillar end, stem end, and fruit side. An original approach was adopted to integrate, within simple linear models, covariates potentially related to cracking, such as rainfall accumulation before harvest, fruit weight, and firmness. We found the first stable quantitative trait loci (QTLs) for cherry fruit cracking, explaining percentages of phenotypic variance above 20%, for each of these three types of cracking tolerance, in different linkage groups, confirming the high complexity of this trait. For these and other QTLs, further analyses suggested the existence of at least two-linked QTLs in each linkage group, some of which showed confidence intervals close to 5 cM. These promising results open the possibility of developing marker-assisted selection strategies to select cracking-tolerant sweet cherry cultivars. Further studies are needed to confirm the stability of the reported QTLs over different genetic backgrounds and environments and to narrow down the QTL confidence intervals, allowing the exploration of underlying candidate genes.


2017 ◽  
Vol 8 ◽  
Author(s):  
Xiliang Qi ◽  
Congli Liu ◽  
Lulu Song ◽  
Yuhong Li ◽  
Ming Li

Author(s):  
Michaela Benková ◽  
Iveta Čičová ◽  
Daniela Benedikova ◽  
Lubomir Mendel ◽  
Miroslav Glasa

Abstract The work is focused on the evaluation of variability of morphological and pomological characteristics of several old sweet cherries (Prunus avium L.) that were found in different Slovak regions. The experimental work has been performed during two years, 2014 and 2015. The following characteristics according to the descriptor list of subgenus Cerasus were evaluated - period of flowering and ripening, morphological characteristics of the flowers, fruit size, fruit weight, and quality parameters. The results showed high variability of evaluated accessions. From the 13 surveyed localities, the most valuable accessions were found in the locality Hornį Streda - places Čachtice, Krakovany, Nitra, and Brdárka. During the collecting expeditions, 170 accessions of sweet cherry, with fruit of the different quality were found. The most interesting accessions were grafted onto rootstocks with different intensity of growth (Prunus avium L., Prunus mahaleb L., and ‘Gisela5’). Some of the selected cherry accessions can be used for commercial growing after tests, while some of them can be used only for collection of genetic resources and as potential genitors in breeding programmes.


2005 ◽  
Vol 83 (2) ◽  
pp. 202-210 ◽  
Author(s):  
Bjarne Hjelmsted Pedersen

The tensile strengths of graftings between three selected sweet cherry cultivars and five selected cherry rootstocks were determined with an Instron instrument 6, 12, and 18 weeks after grafting and compared with the tensile strength of self-grafted rootstocks and graftings of rootstocks used as scions. The combination of sweet cherry cultivars and rootstocks was selected to provide a range of compatibility based on preliminary work. The tensile strengths of sweet cherry cultivars grafted on different rootstocks never exceeded the tensile strengths of the self-grafted rootstocks. Rootstocks grafted as scions on Prunus avium L. rootstocks and self-grafted rootstocks produced some of the strongest unions tested and also produced union strength much faster than any of the other combinations. The degree of compatibility was quantified and results indicated that if this value was below 0.2, measured 18 weeks after grafting, it corresponded to combinations with major risks of delayed incompatibility.Key words: tensile strength, grafting, compatibility, sweet cherry, Prunus avium.


Sign in / Sign up

Export Citation Format

Share Document