scholarly journals The interaction of verprolin WIRE with the adapter proteins family intersectin

Author(s):  
S. V. Kropyvko ◽  
A. V. Rynditch

Aim. WIRE is a scafold protein that regulates actin cytoskeleton rearrangements and the formation of actin enriched membrane processes responsible for invasion and migration. ITSN1 and ITSN2 are representatives of the family of intersectins who participate in the reorganization of the actin cytoskeleton, as well as in other processes, such as endo/enzocytosis, cellular signal transduction, etc. As these proteins participate in the same processes, we checked their interaction with each other. Methods. Protein-protein interactions were identified using the GST pull-down method. Results. We showed that the SH3 domains of ITSN1 and ITSN2 interact with WIRE, and found that while WIRE is in a complex with endogenous actin. Conclusions. ITSN1 and ITSN2 interact with WIRE, which is located in a complex with endogenous actin. Keywords: WIRE, ITSN1 and ITSN2, actin.

2005 ◽  
Vol 33 (6) ◽  
pp. 1247-1249 ◽  
Author(s):  
G. Mirey ◽  
A. Soulard ◽  
C. Orange ◽  
S. Friant ◽  
B. Winsor

SH3 (Src homology-3) domains are involved in protein–protein interactions through proline-rich domains. Many SH3-containing proteins are implicated in actin cytoskeleton organization. The aim of our ongoing work is to study the functions of the SH3-containing proteins in actin cytoskeleton regulation. The yeast Saccharomyces cerevisiae proteome includes 29 SH3 domains distributed in 25 proteins. We have examined the direct involvement of these SH3 domains in actin polymerization using an in vitro polymerization assay on GST (glutathione S-transferase)–SH3-coated beads. As expected, not all SH3 domains show polymerization activity, and many recruit distinct partners as assessed by microscopy and pull-down experiments. One such partner, Las17p, the yeast homologue of WASP (Wiskott–Aldrich syndrome protein), was assayed because it stimulates actin nucleation via the Arp2/3 (actin-related protein 2/3) complex. Ultimately, proteins involved in specific biological processes, such as membrane trafficking, may also be recruited by some of these SH3 domains, shedding light on the SH3-containing proteins and actin cytoskeleton functions in these processes.


2020 ◽  
Author(s):  
James Frederich ◽  
Ananya Sengupta ◽  
Josue Liriano ◽  
Ewa A. Bienkiewicz ◽  
Brian G. Miller

Fusicoccin A (FC) is a fungal phytotoxin that stabilizes protein–protein interactions (PPIs) between 14-3-3 adapter proteins and their phosphoprotein interaction partners. In recent years, FC has emerged as an important chemical probe of human 14-3-3 PPIs implicated in cancer and neurological diseases. These previous studies have established the structural requirements for FC-induced stabilization of 14-3-3·client phosphoprotein complexes; however, the effect of different 14-3-3 isoforms on FC activity has not been systematically explored. This is a relevant question for the continued development of FC variants because there are seven distinct isoforms of 14-3-3 in humans. Despite their remarkable sequence and structural similarities, a growing body of experimental evidence supports both tissue-specific expression of 14-3-3 isoforms and isoform-specific functions <i>in vivo</i>. Herein, we report the isoform-specificity profile of FC <i>in vitro</i>using recombinant human 14-3-3 isoforms and a focused library of fluorescein-labeled hexaphosphopeptides mimicking the C-terminal 14-3-3 recognition domains of client phosphoproteins targeted by FC in cell culture. Our results reveal modest isoform preferences for individual client phospholigands and demonstrate that FC differentially stabilizes PPIs involving 14-3-3s. Together, these data provide strong motivation for the development of non-natural FC variants with enhanced selectivity for individual 14-3-3 isoforms.


2020 ◽  
Author(s):  
James Frederich ◽  
Ananya Sengupta ◽  
Josue Liriano ◽  
Ewa A. Bienkiewicz ◽  
Brian G. Miller

Fusicoccin A (FC) is a fungal phytotoxin that stabilizes protein–protein interactions (PPIs) between 14-3-3 adapter proteins and their phosphoprotein interaction partners. In recent years, FC has emerged as an important chemical probe of human 14-3-3 PPIs implicated in cancer and neurological diseases. These previous studies have established the structural requirements for FC-induced stabilization of 14-3-3·client phosphoprotein complexes; however, the effect of different 14-3-3 isoforms on FC activity has not been systematically explored. This is a relevant question for the continued development of FC variants because there are seven distinct isoforms of 14-3-3 in humans. Despite their remarkable sequence and structural similarities, a growing body of experimental evidence supports both tissue-specific expression of 14-3-3 isoforms and isoform-specific functions <i>in vivo</i>. Herein, we report the isoform-specificity profile of FC <i>in vitro</i>using recombinant human 14-3-3 isoforms and a focused library of fluorescein-labeled hexaphosphopeptides mimicking the C-terminal 14-3-3 recognition domains of client phosphoproteins targeted by FC in cell culture. Our results reveal modest isoform preferences for individual client phospholigands and demonstrate that FC differentially stabilizes PPIs involving 14-3-3s. Together, these data provide strong motivation for the development of non-natural FC variants with enhanced selectivity for individual 14-3-3 isoforms.


2012 ◽  
Vol 5 (1) ◽  
pp. 29-39 ◽  
Author(s):  
Natalya Kurochkina ◽  
Udayan Guha

Physiology ◽  
2005 ◽  
Vol 20 (4) ◽  
pp. 218-224 ◽  
Author(s):  
Shoshana Levy ◽  
Tsipi Shoham

Tetraspanins are evolutionarily conserved membrane proteins that tend to associate laterally with one another and to cluster dynamically with numerous partner proteins in membrane microdomains. Consequently, members of this family are involved in the coordination of intracellular and intercellular processes, including signal transduction; cell proliferation, adhesion, and migration; cell fusion; and host-parasite interactions.


2017 ◽  
Vol 312 (4) ◽  
pp. C459-C477 ◽  
Author(s):  
Anna R. Busija ◽  
Hemal H. Patel ◽  
Paul A. Insel

Caveolins (Cavs) are ~20 kDa scaffolding proteins that assemble as oligomeric complexes in lipid raft domains to form caveolae, flask-shaped plasma membrane (PM) invaginations. Caveolae (“little caves”) require lipid-lipid, protein-lipid, and protein-protein interactions that can modulate the localization, conformational stability, ligand affinity, effector specificity, and other functions of proteins that are partners of Cavs. Cavs are assembled into small oligomers in the endoplasmic reticulum (ER), transported to the Golgi for assembly with cholesterol and other oligomers, and then exported to the PM as an intact coat complex. At the PM, cavins, ~50 kDa adapter proteins, oligomerize into an outer coat complex that remodels the membrane into caveolae. The structure of caveolae protects their contents (i.e., lipids and proteins) from degradation. Cellular changes, including signal transduction effects, can destabilize caveolae and produce cavin dissociation, restructuring of Cav oligomers, ubiquitination, internalization, and degradation. In this review, we provide a perspective of the life cycle (biogenesis, degradation), composition, and physiologic roles of Cavs and caveolae and identify unanswered questions regarding the roles of Cavs and cavins in caveolae and in regulating cell physiology.1


1993 ◽  
Vol 340 (1293) ◽  
pp. 279-285 ◽  

The targets of receptor protein-tyrosine kinases are characterized by Src homology 2 (SH2) domains, that mediate specific interactions with receptor autophosphorylation sites. SH 2-mediated interactions are important for the activation of biochemical signalling pathways in cells stimulated with growth factors. A distinct protein module, the SH3 domain, is frequently found in polypeptides that contain SH2 domains, and is also implicated in controlling protein-protein interactions in signal transduction. Evidence suggesting that SH2 and SH3 domains act synergistically in stimulation of the Ras pathway is discussed.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Paula Moravkova ◽  
Darina Kohoutova ◽  
Stanislav Rejchrt ◽  
Jiri Cyrany ◽  
Jan Bures

The family of S100 proteins represents 25 relatively small (9–13 kD) calcium binding proteins. These proteins possess a broad spectrum of important intracellular and extracellular functions. Colorectal cancer is the third most common cancer in men (after lung and prostate cancer) and the second most frequent cancer in women (after breast cancer) worldwide. S100 proteins are involved in the colorectal carcinogenesis through different mechanisms: they enable proliferation, invasion, and migration of the tumour cells; furthermore, S100 proteins increase angiogenesis and activate NF-κβsignaling pathway, which plays a key role in the molecular pathogenesis especially of colitis-associated carcinoma. The expression of S100 proteins in the cancerous tissue and serum levels of S100 proteins might be used as a precise diagnostic and prognostic marker in patients with suspected or already diagnosed colorectal neoplasia. Possibly, in the future, S100 proteins will be a therapeutic target for tailored anticancer therapy.


2019 ◽  
Author(s):  
Jennifer A. Miles ◽  
Fruzsina Hobor ◽  
James Taylor ◽  
Christian Tiede ◽  
Philip R. Rowell ◽  
...  

AbstractThe BCL-2 family is a challenging set of proteins to target selectively due to sequence and structural homologies across the family. Selective ligands for the BCL-2 family regulators of apoptosis are desirable as probes to understand cell biology and apoptotic signalling pathways, and as starting points for inhibitor design. We have used phage display to isolate Affimer reagents (non-antibody binding proteins based on a conserved scaffold) to identify ligands for MCL-1, BCL-xL, BCL-2, BAK and BAX, then used multiple biophysical characterisation methods to probe the interactions. We established that purified Affimers elicit selective and potent recognition of their target BCL-2 protein. For anti-apoptotic targets, competitive inhibition of their canonical protein-protein interactions is demonstrated. Co-crystal structures reveal an unprecedented mode of molecular recognition; where a BH3 helix is normally bound, flexible loops from the Affimer dock into the BH3 binding cleft. Moreover, the Affimers induce a change in the target proteins towards a desirable drug bound like conformation. These results indicate Affimers can be used as alternative templates to inspire design of selective BCL-2 family modulators, and provide proof-of-concept for the elaboration of selective non-antibody binding reagents for use in cell-biology applications.


2020 ◽  
Author(s):  
James Frederich ◽  
Ananya Sengupta ◽  
Josue Liriano ◽  
Ewa A. Bienkiewicz ◽  
Brian G. Miller

Fusicoccin A (FC) is a fungal phytotoxin that stabilizes protein–protein interactions (PPIs) between 14-3-3 adapter proteins and their phosphoprotein interaction partners. In recent years, FC has emerged as an important chemical probe of human 14-3-3 PPIs implicated in cancer and neurological diseases. These previous studies have established the structural requirements for FC-induced stabilization of 14-3-3·client phosphoprotein complexes; however, the effect of different 14-3-3 isoforms on FC activity has not been systematically explored. This is a relevant question for the continued development of FC variants because there are seven distinct isoforms of 14-3-3 in humans. Despite their remarkable sequence and structural similarities, a growing body of experimental evidence supports both tissue-specific expression of 14-3-3 isoforms and isoform-specific functions <i>in vivo</i>. Herein, we report the isoform-specificity profile of FC <i>in vitro</i>using recombinant human 14-3-3 isoforms and a focused library of fluorescein-labeled hexaphosphopeptides mimicking the C-terminal 14-3-3 recognition domains of client phosphoproteins targeted by FC in cell culture. Our results reveal modest isoform preferences for individual client phospholigands and demonstrate that FC differentially stabilizes PPIs involving 14-3-3s. Together, these data provide strong motivation for the development of non-natural FC variants with enhanced selectivity for individual 14-3-3 isoforms.


Sign in / Sign up

Export Citation Format

Share Document