scholarly journals Formal Verification of a Power Controller Using the Real-Time Model Checker UPPAAL

1999 ◽  
Vol 6 (8) ◽  
Author(s):  
Klaus Havelund ◽  
Kim G. Larsen ◽  
Arne Skou

A real-time system for power-down control in audio/video components<br />is modeled and verified using the real-time model checker UPPAAL. The<br />system is supposed to reside in an audio/video component and control (read from and write to) links to neighbor audio/video components such as TV, VCR and remote–control. In particular, the system is responsible for the powering up and down of the component in between the arrival of data, and in order to do so in a safe way without loss of data, it is essential that no link interrupts are lost. Hence, a component system is a multitasking system with hard real-time requirements, and we present techniques for modeling time consumption in such a multitasked,<br />prioritized system. The work has been carried out in a collaboration between Aalborg University and the audio/video company B&O. By modeling the system, 3 design errors were identified and corrected, and the following verification confirmed the validity of the design but also revealed the necessity for an upper limit of the interrupt frequency. The resulting design has been implemented and it is going to be incorporated as part of a new product line.

2014 ◽  
Vol 577 ◽  
pp. 865-872
Author(s):  
Jun Yi Li ◽  
Yi Zhang ◽  
Ren Fa Li

The Real-time system estimates the worst-case execution time (WCET) of the program to ensure the real-time requirements of the system. In this paper, a test method based on Associative Process Communication (APC) is put forward. First it tests the WCET value of basic blocks of ICFG through the use of APC algorithm, and then estimates the WCET by analyzing the worst execution path of the basic block. APC test method tests all benchmarks of Mälardalen. And the test results show that the proposed test method is precise and effective, and the test error is within the theoretical analysis.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Raphaël Beamonte ◽  
Michel R. Dagenais

Real-time systems have always been difficult to monitor and debug because of the timing constraints which rule out any tool significantly impacting the system latency and performance. Tracing is often the most reliable tool available for studying real-time systems. The real-time behavior of Linux systems has improved recently and it is possible to have latencies in the low microsecond range. Therefore, tracers must ensure that their overhead is within that range and predictable and scales well to multiple cores. The LTTng 2.0 tools have been optimized for multicore performance, scalability, and flexibility. We used and extended the real-time verification tool rteval to study the impact of LTTng on the maximum latency on hard real-time applications. We introduced a new real-time analysis tool to establish the baseline of real-time system performance and then to measure the impact added by tracing the kernel and userspace (UST) with LTTng. We then identified latency problems and accordingly modified LTTng-UST and the procedure to isolate the shielded real-time cores from the RCU interprocess synchronization routines. This work resulted in extended tools to measure the real-time properties of multicore Linux systems, a characterization of the impact of LTTng kernel and UST tracing tools, and improvements to LTTng.


2015 ◽  
Vol 2 (1) ◽  
pp. 35-41
Author(s):  
Rivan Risdaryanto ◽  
Houtman P. Siregar ◽  
Dedy Loebis

The real-time system is now used on many fields, such as telecommunication, military, information system, evenmedical to get information quickly, on time and accurate. Needless to say, a real-time system will always considerthe performance time. In our application, we define the time target/deadline, so that the system should execute thewhole tasks under predefined deadline. However, if the system failed to finish the tasks, it will lead to fatal failure.In other words, if the system cannot be executed on time, it will affect the subsequent tasks. In this paper, wepropose a real-time system for sending data to find effectiveness and efficiency. Sending data process will beconstructed in MATLAB and sending data process has a time target as when data will send.


Vestnik MEI ◽  
2018 ◽  
Vol 5 (5) ◽  
pp. 73-78
Author(s):  
Igor В. Fominykh ◽  
◽  
Sergey V. Romanchuk ◽  
Nikolay Р. Alekseev ◽  
◽  
...  

2021 ◽  
Vol 40 (3) ◽  
pp. 1-12
Author(s):  
Hao Zhang ◽  
Yuxiao Zhou ◽  
Yifei Tian ◽  
Jun-Hai Yong ◽  
Feng Xu

Reconstructing hand-object interactions is a challenging task due to strong occlusions and complex motions. This article proposes a real-time system that uses a single depth stream to simultaneously reconstruct hand poses, object shape, and rigid/non-rigid motions. To achieve this, we first train a joint learning network to segment the hand and object in a depth image, and to predict the 3D keypoints of the hand. With most layers shared by the two tasks, computation cost is saved for the real-time performance. A hybrid dataset is constructed here to train the network with real data (to learn real-world distributions) and synthetic data (to cover variations of objects, motions, and viewpoints). Next, the depth of the two targets and the keypoints are used in a uniform optimization to reconstruct the interacting motions. Benefitting from a novel tangential contact constraint, the system not only solves the remaining ambiguities but also keeps the real-time performance. Experiments show that our system handles different hand and object shapes, various interactive motions, and moving cameras.


2018 ◽  
Vol 51 (15) ◽  
pp. 1062-1067 ◽  
Author(s):  
Mojtaba Sharifzadeh ◽  
Mario Pisaturo ◽  
Arash Farnam ◽  
Adolfo Senatore

2014 ◽  
Vol 10 (4) ◽  
pp. 2318-2329 ◽  
Author(s):  
Hugo Morais ◽  
Pieter Vancraeyveld ◽  
Allan Henning Birger Pedersen ◽  
Morten Lind ◽  
Hjortur Johannsson ◽  
...  

2015 ◽  
Vol 738-739 ◽  
pp. 1105-1110 ◽  
Author(s):  
Yuan Qing Qin ◽  
Ying Jie Cheng ◽  
Chun Jie Zhou

This paper mainly surveys the state-of-the-art on real-time communicaton in industrial wireless local networks(WLANs), and also identifys the suitable approaches to deal with the real-time requirements in future. Firstly, this paper summarizes the features of industrial WLANs and the challenges it encounters. Then according to the real-time problems of industrial WLAN, the fundamental mechanism of each recent representative resolution is analyzed in detail. Meanwhile, the characteristics and performance of these resolutions are adequately compared. Finally, this paper concludes the current of the research and discusses the future development of industrial WLANs.


Sign in / Sign up

Export Citation Format

Share Document