scholarly journals The Application of 4D Seismic in Niger Delta Basin: A Review

2020 ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 569-578
Author(s):  
C. G. Okeugo ◽  
K. M. Onuoha ◽  
A. C. Ekwe

AbstractThe Ozifa reservoir is proven reservoir that cuts across the Northern and Greater Ughelli depo-belts of the Niger Delta Basin. This reservoir possesses heterogenous character southward of the field, making elastic properties, lithologies and fluid types difficult to describe accurately. In this study, rock physics template was applied to porosity and acoustic impedance (AI) crossplot clusters to illustrate rock–fluid relationships using modified Hashin–Shtrikman upper bound, Voigt upper bound and Reuss lower bound, as an input in the template. Values of acoustic impedance and porosity were used as lithofacies classification parameters for discrimination of lithofacies and fluid types. Our result showed that modified Hashin–Shtrikman upper bound line when applied in acoustic impedance (AI) and porosities (φ) crossplot domain discriminated gas-filled reservoirs from brine filled reservoirs and shale effectively. Similarly, results from crossplot showed clear separation of shale, heteroliths filled with brine and gas bearing sand, which was not plausible using conventional petrophysical analysis. This approach was successfully applied in analysing lithofacies and fluid relationship in different well locations and serves as a model for successful prediction of different lithology and fluid types, a major requirement for determining effects of geological variables such as sorting, clay distributions on the reservoir connectivity and optimum production using time-lapse (4D) seismic interpretation.


2021 ◽  
Vol 13 (2) ◽  
pp. 601-610
Author(s):  
K. Itiowe ◽  
R. Oghonyon ◽  
B. K. Kurah

The sediment of #3 Well of the Greater Ughelli Depobelt are represented by sand and shale intercalation. In this study, lithofacies analysis and X-ray diffraction technique were used to characterize the sediments from the well. The lithofacies analysis was based on the physical properties of the sediments encountered from the ditch cuttings.  Five lithofacies types of mainly sandstone, clayey sandstone, shaly sandstone, sandy shale and shale and 53 lithofacies zones were identified from 15 ft to 11295 ft. The result of the X-ray diffraction analysis identified that the following clay minerals – kaolinite, illite/muscovite, sepiolite, chlorite, calcite, dolomite; with kaolinite in greater percentage. The non-clay minerals include quartz, pyrite, anatase, gypsum, plagioclase, microcline, jarosite, barite and fluorite; with quartz having the highest percentage. Therefore, due to the high percentage of kaolinite in #3 well, the pore filing kaolinite may have more effect on the reservoir quality than illite/muscovite, chlorite and sepiolite. By considering the physical properties, homogenous and heterogeneous nature of the #3 Well, it would be concluded that #3 Well has some prospect for petroleum and gas exploration.


Author(s):  
Joseph Nanaoweikule Eradiri ◽  
Ehimare Erhire Odafen ◽  
Ikenna Christopher Okwara ◽  
Ayonma Wilfred Mode ◽  
Okwudiri Aloysius Anyiam ◽  
...  

2017 ◽  
Vol 5 (1) ◽  
pp. 19
Author(s):  
Ubong Essien ◽  
Akaninyene Akankpo ◽  
Okechukwu Agbasi

Petrophysical analysis was performed in two wells in the Niger Delta Region, Nigeria. This study is aimed at making available petrophysical data, basically water saturation calculation using cementation values of 2.0 for the reservoir formations of two wells in the Niger delta basin. A suite of geophysical open hole logs namely Gamma ray; Resistivity, Sonic, Caliper and Density were used to determine petrophysical parameters. The parameters determined are; volume of shale, porosity, water saturation, irreducible water saturation and bulk volume of water. The thickness of the reservoir varies between 127ft and 1620ft. Average porosity values vary between 0.061 and 0.600; generally decreasing with depth. The mean average computed values for the Petrophysical parameters for the reservoirs are: Bulk Volume of Water, 0.070 to 0.175; Apparent Water Resistivity, 0.239 to 7.969; Water Saturation, 0.229 to 0.749; Irreducible Water Saturation, 0.229 to 0.882 and Volume of Shale, 0.045 to 0.355. The findings will also enhance the proper characterization of the reservoir sands.


2016 ◽  
Vol 19 (03) ◽  
pp. 391-402
Author(s):  
Sunday Amoyedo ◽  
Emmanuel Ekut ◽  
Rasaki Salami ◽  
Liliana Goncalves-Ferreira ◽  
Pascal Desegaulx

Summary This paper presents case studies focused on the interpretation and integration of seismic reservoir monitoring from several fields in conventional offshore and deepwater Niger Delta. The fields are characterized by different geological settings and development-maturity stages. We show different applications varying from qualitative to quantitative use of time-lapse (4D) seismic information. In the first case study, which is in shallow water, the field has specific reservoir-development challenges, simple geology, and is in phased development. On this field, 4D seismic, which was acquired several years ago, is characterized by poor seismic repeatability. Nevertheless, we show that because of improvements from seismic reprocessing, 4D seismic makes qualitative contributions to the ongoing field development. In the second case study, the field is characterized by complex geological settings. The 4D seismic is affected by overburden with strong lateral variations in velocity and steeply dipping structure (up to 40°). Prestack-depth-imaging (PSDM) 4D seismic is used in a more-qualitative manner to monitor gas injection, validate the geologic/reservoir models, optimize infill injector placement, and consequently, enhance field-development economics. The third case study presents a deep offshore field characterized by a complex depositional system for some reservoirs. In this example, good 4D-seismic repeatability (sum of source- and receiver-placement differences between surveys, dS+dR) is achieved, leading to an increased quantitative use of 4D monitoring for the assessment of sand/sand communication, mapping of oil/water (OWC) front, pressure evolution, and dynamic calibration of petro-elastic model (PEM), and also as a seismic-based production-logging tool. In addition, 4D seismic is used to update seismic interpretation, provide a better understanding of internal architecture of the reservoirs units, and, thereby, yield a more-robust reservoir model. The 4D seismic in this field is a key tool for field-development optimization and reservoir management. The last case study illustrates the need for seismic-feasibility studies to detect 4D responses related to production. In addition to assessing the impact of the field environment on the 4D- seismic signal, these studies also help in choosing the optimum seismic-survey type, design, and acquisition parameters. These studies would possibly lead to the adoption of new technologies such as broad-band streamer or nodes acquisition in the near future.


2016 ◽  
Vol 90 (3) ◽  
pp. 1057-1058 ◽  
Author(s):  
JIANG Li ◽  
WU Shenghe ◽  
HU Guangyi ◽  
ZHANG Jiajia

Author(s):  
A. Ogbamikhumi ◽  
T. Tralagba ◽  
E. E. Osagiede

Field ‘K’ is a mature field in the coastal swamp onshore Niger delta, which has been producing since 1960. As a huge producing field with some potential for further sustainable production, field monitoring is therefore important in the identification of areas of unproduced hydrocarbon. This can be achieved by comparing production data with the corresponding changes in acoustic impedance observed in the maps generated from base survey (initial 3D seismic) and monitor seismic survey (4D seismic) across the field. This will enable the 4D seismic data set to be used for mapping reservoir details such as advancing water front and un-swept zones. The availability of good quality onshore time-lapse seismic data for Field ‘K’ acquired in 1987 and 2002 provided the opportunity to evaluate the effect of changes in reservoir fluid saturations on time-lapse amplitudes. Rock physics modelling and fluid substitution studies on well logs were carried out, and acoustic impedance change in the reservoir was estimated to be in the range of 0.25% to about 8%. Changes in reservoir fluid saturations were confirmed with time-lapse amplitudes within the crest area of the reservoir structure where reservoir porosity is 0.25%. In this paper, we demonstrated the use of repeat Seismic to delineate swept zones and areas hit with water override in a producing onshore reservoir.


Author(s):  
Oluwatoyin Khadijat Olaleye ◽  
Pius Adekunle Enikanselu ◽  
Michael Ayuk Ayuk

AbstractHydrocarbon accumulation and production within the Niger Delta Basin are controlled by varieties of geologic features guided by the depositional environment and tectonic history across the basin. In this study, multiple seismic attribute transforms were applied to three-dimensional (3D) seismic data obtained from “Reigh” Field, Onshore Niger Delta to delineate and characterize geologic features capable of harboring hydrocarbon and identifying hydrocarbon productivity areas within the field. Two (2) sand units were delineated from borehole log data and their corresponding horizons were mapped on seismic data, using appropriate check-shot data of the boreholes. Petrophysical summary of the sand units revealed that the area is characterized by high sand/shale ratio, effective porosity ranged from 16 to 36% and hydrocarbon saturation between 72 and 92%. By extracting attribute maps of coherence, instantaneous frequency, instantaneous amplitude and RMS amplitude, characterization of the sand units in terms of reservoir geomorphological features, facies distribution and hydrocarbon potential was achieved. Seismic attribute results revealed (1) characteristic patterns of varying frequency and amplitude areas, (2) major control of hydrocarbon accumulation being structural, in terms of fault, (3) prospective stratigraphic pinch-out, lenticular thick hydrocarbon sand, mounded sand deposit and barrier bar deposit. Seismic Attributes analysis together with seismic structural interpretation revealed prospective structurally high zones with high sand percentage, moderate thickness and high porosity anomaly at the center of the field. The integration of different seismic attribute transforms and results from the study has improved our understanding of mapped sand units and enhanced the delineation of drillable locations which are not recognized on conventional seismic interpretations.


Sign in / Sign up

Export Citation Format

Share Document