scholarly journals Melting properties of pyrolite: implication for chemical segregation in the primitive Earth’s mantle.

2021 ◽  
Author(s):  
Remy Pierru ◽  
Denis Andrault ◽  
Geeth Manthilake ◽  
Nicolas Guignot ◽  
Jean-Paul Itie ◽  
...  
Author(s):  
J.K. Weiss ◽  
M. Gajdardziska-Josifovska ◽  
M. R. McCartney ◽  
David J. Smith

Interfacial structure is a controlling parameter in the behavior of many materials. Electron microscopy methods are widely used for characterizing such features as interface abruptness and chemical segregation at interfaces. The problem for high resolution microscopy is to establish optimum imaging conditions for extracting this information. We have found that off-axis electron holography can provide useful information for the study of interfaces that is not easily obtained by other techniques.Electron holography permits the recovery of both the amplitude and the phase of the image wave. Recent studies have applied the information obtained from electron holograms to characterizing magnetic and electric fields in materials and also to atomic-scale resolution enhancement. The phase of an electron wave passing through a specimen is shifted by an amount which is proportional to the product of the specimen thickness and the projected electrostatic potential (ignoring magnetic fields and diffraction effects). If atomic-scale variations are ignored, the potential in the specimen is described by the mean inner potential, a bulk property sensitive to both composition and structure. For the study of interfaces, the specimen thickness is assumed to be approximately constant across the interface, so that the phase of the image wave will give a picture of mean inner potential across the interface.


Nature ◽  
2020 ◽  
Vol 586 (7830) ◽  
pp. 506-507
Author(s):  
Laura Cobden
Keyword(s):  

2001 ◽  
Vol 7 (S2) ◽  
pp. 1112-1113
Author(s):  
Rhonda M. Stroud ◽  
Jeffrey W. Long ◽  
Karen E. Swider-Lyons ◽  
Debra R. Rolison

To address how the chemical and structural heterogeneity of Pt50Ru50 nanoparticles affects methanol oxidation activity, we have employed an arsenal of transmission electron microscopy techniques (conventional bright field-imaging, selected area diffraction, atomic-resolution lattice imaging, electron-energy loss spectroscopy, and energy-dispersive x-ray spectroscopy) to characterize 2.5-nm particles in differing oxidation and hydration states. Our studies demonstrate that electrocatalysts containing a high fraction of Ru-rich hydrous oxide, as apposed to the anhydrous PtRu bimetallic alloy, have as much as 250x higher methanol oxidation activityThe nominally 2.5-nm Pt50Ru50 particles were studied in as-received, reduced and reoxidized forms. The reducing treatment consisted of 2 h at 100 °C in flowing 10% PL/argon mixture. For re-oxidation, the reduced particles were heated for 20 h at 100 °C in an H2O-saturated oxygen atmosphere. The particles were suspended in methanol, and pipetted onto holey-carboncoated Cu grids for TEM studies.


A phase change may hinder or enhance convection, depending on its characteristics. Univariant transformations such as may occur in the mantle constitute a barrier to convection unless the motion starts at some distance above or below the transition level; an initial temperature gradient in excess of the adiabatic value is also required. Multivariant transformations only require, in the transformation zone, an initial gradient slightly greater than the adiabatic value for a homogeneous layer. The effect on convection of transformation rates is not likely to be serious.


1968 ◽  
Vol 1 (3) ◽  
pp. 198-199
Author(s):  
D.W. Collinson
Keyword(s):  

Nature ◽  
2001 ◽  
Vol 411 (6835) ◽  
pp. 293-296 ◽  
Author(s):  
D. M. Kerrick ◽  
J. A. D. Connolly

Sign in / Sign up

Export Citation Format

Share Document