scholarly journals Results of biological control of chestnut blight in Slovakia

2005 ◽  
Vol 86 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Gabriela Juhásová ◽  
Katarína Adamcíková ◽  
Cécile Robin

The health condition of Castanea sativa in the Stiavnicko-krupinská region of Slovakia was evaluated and the incidence of the fungus Cryphonectria parasitica was noted. A total of 2274 trees were examined. The degree of injury was expressed on a scale varying from zero to five and an index of health condition, IHC, was calculated from these data. The values of IHC varied from 0.12 to 1.36. From 1992 to 1997, we treated 714 cankers using hypovirulent strains of C. parasitica obtained from INRA Clermont-Ferrand. Callusing was observed on 32.7% of the treated cankers.

Author(s):  
Carmen Emilia PUIA ◽  
Daniela Andreea GRIGORESCU ◽  
Raluca Vasilica MICLEA

Cryphonectria parasitica  (Murr.) Bar [syn. Endothia parasitica (Murr. And.] (anamorf: Endothiella sp .) is the causal agent of chestnut bark disease or chestnut blight, disease which produced great damages throughout the world, for example, in Europe, the European chestnut tree ( Castanea sativa (P.) Mill) was heavily affected. Environmental concerns have focused attention on natural forms of disease control as an effective alternative to chemical pesticides. In the chestnut blight fungus, Cryphonectria parasitica deals with a natural form of biological control in which the virulence of a fungal pathogen is attenuated by an endogenous viral RNA genetic element- the hypovirulent strain. In our researches we picked samples of chestnut bark from different areas in Maramures county. We’ve isolated the fungus on PDA medium and we’ve studied the morphological characteristics of the usual virulent strain and we looked for a possible hypovirulent strain in order to study its capacity for biological control. The fungus develops in the bark and in cambium where forms a yellowish or brownish stroma and produces both conidia and ascospores. The pycnidia stromata break through the lenticels producing conidia and later in the same stroma develop the perithecia which produce ascospores. Both strains of the fungus were found in the research area. The hypovirulent strain had a slower development, showed no sporu lation and pigmentation “white cultural strain” and was tested in vitro for the capacity to convert the virulent isolates by dual culture tests.


Forests ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 492 ◽  
Author(s):  
Stephanos Diamandis

Sweet chestnut (Castanea sativa Mill.) is an important tree for Greece. The invasive fungus Cryphonectria parasitica, which causes chestnut blight, was first found in Central Greece in 1963. It has since spread all over the country, significantly reducing the national annual nut production. The increasing decline of forests and orchards due to the disease led to a project in 1995, which aimed at studying the feasibility of applying biological control. A prerequisite study of the existing vegetative compatibility types of the pathogen showed only four, and their distribution was mapped. A pilot project (1998–2000) that consisted of clear cutting heavily infected coppice stands and introducing hypovirulence to the remainder was implemented on Mt. Athos on a 7000 ha sweet chestnut forest. Two evaluations (in 2003 and 2011) revealed that hypovirulence was established in the sweet chestnut forests and spread more or less homogeneously. A nationwide project introducing hypovirulence to 29 counties was implemented in two, 3-yr-periods 2007–2009 (17 counties) and 2014–2016 (12 counties). The new evaluations showed that hypovirulence spread profoundly and forests and orchards started recovering. The appearance of natural hypovirulence cannot be predicted. Introduced hypovirulence and silvicultural interventions can be used to manage the disease. It is the responsibility of the forest/orchard manager to decide whether to wait for appearance of natural hypovirulence, or to introduce it for a faster decline in disease.


2007 ◽  
Vol 158 (11) ◽  
pp. 342-348
Author(s):  
Ursula Heiniger

Since 1986 several isolated stands of chestnut (Castanea sativa) located north of the Swiss Alps have been infected with the chestnut blight fungus (Cryphonectria parasitica). At all sites (1–3), the diversity of the vegetative compatibility types was low. To control the disease, the hypovirus CHV1 was introduced at seventeen sites in five cantons. In total, 571 cankers were treated with local C. parasitica isolates containing CHV1. Re-inspection of the cankers one to two years after treatment demonstrated that the percentage of active cankers was significantly reduced in three cantons. Re-isolations of C. parasitica showed that the hypovirus persisted in 33% to 75% of the treated cankers and was disseminated to new cankers at a low rate. The difficulties and the potential of hypovirus treatment of small chestnut stands are discussed.


Plant Disease ◽  
2019 ◽  
Vol 103 (3) ◽  
pp. 430-438 ◽  
Author(s):  
Joana Beatrice Meyer ◽  
Loïc Chalmandrier ◽  
Fabio Fässler ◽  
Christopher Schefer ◽  
Daniel Rigling ◽  
...  

The invasive fungus Cryphonectria parasitica, the causal agent of chestnut blight, is able to survive and sporulate on the bark of fresh dead Castanea sativa wood for at least 2 years. Here, we experimentally investigated the role of fresh dead wood in the epidemiology of chestnut blight, specifically in the spread of the hyperparasitic virus Cryphonectria hypovirus 1, which acts as biocontrol agent of C. parasitica. A total of 152 artificially initiated, virulent bark cankers in four chestnut stands were treated with virus-infected asexual spores originating either from sporulating dead wood or from a spore suspension. Molecular markers for both the virus and the fungal carrier were used to examine the spread of the applied biocontrol virus. Fourteen months after treatment, 42 to 76% of the conidial spray-treated cankers and 50 to 60% of the cankers exposed to a sporulating dead stem had been virus infected by the applied hypovirulent conidia in all four study sites. Virus infection reduced canker expansion and promoted canker healing (callusing). Thus, fresh chestnut dead wood may play an important role in supporting the successful spread of natural hypovirulence in chestnut forests. Further, combined with the application of virus-infected conidial suspensions, it may help promote the establishment of artificially released hypoviruses in chestnut stands to control chestnut blight.


2018 ◽  
Vol 108 (7) ◽  
pp. 870-877 ◽  
Author(s):  
Marin Ježić ◽  
Jelena Mlinarec ◽  
Rosemary Vuković ◽  
Zorana Katanić ◽  
Ljiljana Krstin ◽  
...  

Invasive species, especially plant pathogens, have a potential to completely eradicate native plant species and remodel landscapes. Tripartite interactions among sweet chestnut (Castanea sativa), chestnut blight-causing invasive fungus Cryphonectria parasitica, and hyperparasitic virus Cryphonectria hypovirus 1 (CHV1) were studied in two populations. The number of different vegetative compatibility (vc) types of C. parasitica more than doubled over the 10 years, while the hypovirulence incidence dropped in one population and slightly increased in the other one. Over the course of our 3-year monitoring experiment, the prevalence of hypovirulent isolates obtained from monitored cankers increased slowly (i.e., more hypovirulent isolates were being obtained from the same cankers over time). Within studied cankers, considerable changes in vc type and CHV1 presence were observed, indicating a highly dynamic system in which virulent and hypovirulent mycelia, sometimes of discordant vc types, often appeared together. The increase in hypovirulence prevalence did not have any observable curative effect on the cankers and, occasionally, reactivation of healed cankers by new, virulent C. parasitica isolates was observed. Both short- and long-term observations and revalidation of the infected plant populations are necessary to accurately estimate disease progress and formulate an adequate disease management strategy.


2012 ◽  
Vol 51 (No. 6) ◽  
pp. 256-258 ◽  
Author(s):  
P. Haltofová ◽  
L. Jankovský ◽  
D. Palovčíková

The causal agent of the chestnut blight, the fungus Cryphonectria parasitica (Murrill) M. E. Barr (syn. Endothia parasitica (Murrill) P. J. Anderson et H. W. Anderson), was found out at new localities in the Czech Republic. The chestnut blight was observed for the first time in the Czech Republic in 2002. Two new localities were discovered in southern Moravia in May and June 2004. The disease was identified both on the sweet chestnut (Castanea sativa Mill.) and on the red oak (Quercus rubraL.). Infected trees were treated according to the order of the State Phytosanitary Administration of the Czech Republic. 


2006 ◽  
Vol 96 (12) ◽  
pp. 1337-1344 ◽  
Author(s):  
S. Prospero ◽  
M. Conedera ◽  
U. Heiniger ◽  
D. Rigling

Sustainable biological control of the chestnut blight fungus Crypho-nectria parasitica with hypovirulence depends on the production and dissemination of hypovirus-infected propagules of the pathogen. We investigated the ability of C. parasitica to sporulate and produce hypo-virus-infected spores on recently dead chestnut wood in coppice stands in southern Switzerland where hypovirulence has been naturally established. The number and type (active, inactive, or none) of cankers was assessed on experimentally cut and stacked stems, firewood stacks, and natural dead wood. Hypovirus-free and hypovirus-infected strains readily survived for more than 1 year in the chestnut blight cankers of the stacked stems. Sporulation of C. parasitica was observed on the surface of preexisting inactive and active cankers, as well as on newly colonized bark areas and was significantly more abundant than on comparable cankers on living stems. On all types of dead wood, we observed more stromata with perithecia than with pycnidia; however, a large proportion of the stromata was not differentiated. All perithecia examined yielded only hypovirus-free ascospores. The incidence of pycnidia that produced hypovirus-infected conidia ranged from 5% on natural dead wood to 41% on the experimental stacks. The mean virus transmission rate into conidia was 69%. Our study demonstrates a considerable saprophytic activity of C. parasitica on recently dead chestnut wood and supports the hypothesis of a role of this saprophytic phase in the epidemiology of hypovirulence.


2000 ◽  
Vol 90 (7) ◽  
pp. 730-737 ◽  
Author(s):  
Cécile Robin ◽  
Carole Anziani ◽  
Paolo Cortesi

In France, chestnut blight, caused by Cryphonectria parasitica, has been controlled since 1974 in orchards, but never in coppice forests, by releasing hypovirulent strains infected with CHV1 hypovirus. We tested the hypothesis that this biological control (BC) has lead to a decrease in blight severity, spread of hypovirulence, and change in C. parasitica populations. The low severity of chestnut blight was confirmed in the six regions studied (subdivided into zones). The remission of cankers was associated with the presence of white isolates presumed to be hypovirulent. These two parameters were also correlated, at the zonal level, to the frequency of sites where BC was used. However, the estimates of the natural background level of hypovirulence, independent of BC, ranged from 4% in forests in Dordogne to 60% in orchards in Lozère. Differences in the rate of hypovirulent isolates among regions were consistent with the diversity of vegetative compatibility (VC) types in populations of C. parasitica. The highest VC-type diversity and mean allelic diversity for known vegetative incompatibility (vic) genes were observed in Dordogne. We showed that the current diversity of VC types in populations of C. parasitica was lower than in 1981. We found 30 VC types among 1,113 isolates of C. parasitica. Ten VC types were incompatible with known EU testers, suggesting that one additional vic gene or allele at one of the six vic loci known should be present in Europe.


Sign in / Sign up

Export Citation Format

Share Document