scholarly journals Optimal Design Criterion for Force Vector Field Sensor-Proposal of Optimization Criterion and Its Application to the Design of Optical Tactile Sensor-

2008 ◽  
Vol 26 (1) ◽  
pp. 68-73
Author(s):  
Hiroyuki Kajimoto
1999 ◽  
Author(s):  
V. N. Latinovic ◽  
V. P. Astakhov ◽  
M. O. M. Osman

Abstract This paper present results of the analysis of a tool static stability in deep-hole drilling. The analysis has been carried out to determine the optimal location of the drill guide pads relative to the drill’s cutters (based upon criteria of equal total pad reactions and equal stability indicators). It is demonstrated that the optimal location can be achieved under asymmetrical location of the supporting pads relative to the direction of the resultant cutting force in a plane perpendicular to the drill axis. By consideration of the drill static force system in the plane which contains the drill axis and the resultant cutting force vector, a new design criterion is proposed. The essence of this concept is to design the deep-hole drills with minimum rubbing and wear of the guide pads and provide for the tool self-piloting.


2020 ◽  
Vol 34 (10) ◽  
pp. 13979-13980
Author(s):  
Wenxi Yu ◽  
Hua Zhou ◽  
Jonathan G. Goldin ◽  
Grace Hyun J. Kim

Domain knowledge acquired from pilot studies is important for medical diagnosis. This paper leverages the population-level domain knowledge based on the D-optimal design criterion to judiciously select CT slices that are meaningful for the disease diagnosis task. As an illustrative example, the diagnosis of idiopathic pulmonary fibrosis (IPF) among interstitial lung disease (ILD) patients is used for this work. IPF diagnosis is complicated and is subject to inter-observer variability. We aim to construct a time/memory-efficient IPF diagnosis model using high resolution computed tomography (HRCT) with domain knowledge-assisted data dimension reduction methods. Four two-dimensional convolutional neural network (2D-CNN) architectures (MobileNet, VGG16, ResNet, and DenseNet) are implemented for an automatic diagnosis of IPF among ILD patients. Axial lung CT images are acquired from five multi-center clinical trials, which sum up to 330 IPF patients and 650 non-IPF ILD patients. Model performance is evaluated using five-fold cross-validation. Depending on the model setup, MobileNet achieved satisfactory results with overall sensitivity, specificity, and accuracy greater than 90%. Further evaluation of independent datasets is underway. Based on our knowledge, this is the first work that (1) uses population-level domain knowledge with optimal design criterion in selecting CT slices and (2) focuses on patient-level IPF diagnosis.


2009 ◽  
Vol 20 (26) ◽  
pp. 264013 ◽  
Author(s):  
Kai Ruschmeier ◽  
André Schirmeisen ◽  
Regina Hoffmann

1998 ◽  
Vol 118 (6) ◽  
pp. 729-734
Author(s):  
Takaomi Yagi ◽  
Kaneo Mohri ◽  
Muneharu Nakabayashi

1997 ◽  
Vol 101 (5) ◽  
pp. 3035-3035
Author(s):  
John W. Parkins ◽  
Jiri Tichy ◽  
Scott D. Sommerfeldt
Keyword(s):  

1988 ◽  
Vol 110 (3) ◽  
pp. 324-329 ◽  
Author(s):  
A. D. Belegundu

Probability-based optimal design of structures is presented. The emphasis here is to develop a practical approach to optimal design given random design parameters. The method is applicable to structures which are modeled using the finite element method. The Hasofer-Lind (H-L) second-moment design criterion is used to formulate the general design problem. A method for calculating the sensitivity coefficients is presented, which involves second-order design sensitivity analysis. The importance of second order derivatives is established. A nonlinear programming technique is used to solve the problem. Numerical results are presented, where stiffness parameters are treated as random variables.


Author(s):  
Harikumar V. Iyer ◽  
Sundar Krishnamurty

Abstract Robust optimal design can be studied as a problem in decision-making requiring tradeoffs between mean and variance attributes. In this context, this paper views Taguchi’s philosophy based design metrics using signal-to-noise (SN) ratios as empirical applications of decision-making under uncertainty with a priori sets of attribute tradeoff values. Alternatively, this paper presents a more rigorous preference-based design metric using concepts from utility theory to accurately capture designer’s intent and preferences. The use of this design metric as the robust optimal design criterion in a modified TRED (Tradeoffs in Robust Engineering Design) method with an innovative response-surface based iterative design space reduction strategy is presented. The effectiveness of the overall design procedure and the performance of the preference-based design metric are tested with the aid of demonstrative case studies and the results are discussed.


Sign in / Sign up

Export Citation Format

Share Document