scholarly journals Time of Arrival range Based Wireless Sensor Localization in Precision Agriculture

2014 ◽  
Vol 3 (2) ◽  
pp. 14-17
Author(s):  
Sang-Hyun Lee ◽  
Kyung-Il Moon
Inventions ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 16
Author(s):  
Herman Sahota ◽  
Ratnesh Kumar

The problem of localization of nodes of a wireless sensor network placed in different physical media (anchor nodes above ground and sensor nodes underground) is addressed in this article. We use time of arrival of signals transmitted between neighboring sensor nodes and between satellite nodes and sensor nodes as the ranging measurement. The localization problem is formulated as a parameter estimation of the joint distribution of the time of arrival values. The probability distribution of the time of arrival of a signal is derived based on rigorous statistical analysis and its parameters are expressed in terms of the location coordinates of the sensor nodes. Maximum likelihood estimates of the nodes’ location coordinates as parameters of the joint distribution of the various time of arrival variables in the network are computed. Sensitivity analysis to study the variation in the estimates with respect to error in measured soil complex permittivity and magnetic permeability is presented to validate the model and methodology.


2014 ◽  
Vol 22 ◽  
pp. 679-689 ◽  
Author(s):  
Peter BRIDA ◽  
Juraj MACHAJ ◽  
Jozef BENIKOVSKY

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3450 ◽  
Author(s):  
Haider Jawad ◽  
Rosdiadee Nordin ◽  
Sadik Gharghan ◽  
Aqeel Jawad ◽  
Mahamod Ismail ◽  
...  

The use of wireless sensor networks (WSNs) in modern precision agriculture to monitor climate conditions and to provide agriculturalists with a considerable amount of useful information is currently being widely considered. However, WSNs exhibit several limitations when deployed in real-world applications. One of the challenges faced by WSNs is prolonging the life of sensor nodes. This challenge is the primary motivation for this work, in which we aim to further minimize the energy consumption of a wireless agriculture system (WAS), which includes air temperature, air humidity, and soil moisture. Two power reduction schemes are proposed to decrease the power consumption of the sensor and router nodes. First, a sleep/wake scheme based on duty cycling is presented. Second, the sleep/wake scheme is merged with redundant data about soil moisture, thereby resulting in a new algorithm called sleep/wake on redundant data (SWORD). SWORD can minimize the power consumption and data communication of the sensor node. A 12 V/5 W solar cell is embedded into the WAS to sustain its operation. Results show that the power consumption of the sensor and router nodes is minimized and power savings are improved by the sleep/wake scheme. The power consumption of the sensor and router nodes is improved by 99.48% relative to that in traditional operation when the SWORD algorithm is applied. In addition, data communication in the SWORD algorithm is minimized by 86.45% relative to that in the sleep/wake scheme. The comparison results indicate that the proposed algorithms outperform power reduction techniques proposed in other studies. The average current consumptions of the sensor nodes in the sleep/wake scheme and the SWORD algorithm are 0.731 mA and 0.1 mA, respectively.


Proceedings ◽  
2018 ◽  
Vol 2 (20) ◽  
pp. 1302 ◽  
Author(s):  
Carlos D. Moreno-Moreno ◽  
María Brox-Jiménez ◽  
Andrés A. Gersnoviez-Milla ◽  
Mariano Márquez-Moyano ◽  
Manuel A. Ortiz-López ◽  
...  

Precision agriculture can be defined as the science of using technology to improve the agricultural production. It is advisable for farmers to use a decision support system; in fact, real–time monitoring of climatic conditions is the only way to know the water needed by a cultivation. On the other hand, since the 1990s, a strong decrease of the Mediterranean Quercus has been observed in the pastures of southwestern Spain and Portugal, causing a high mortality of holm and cork oak trees. Among the factors associated with this decrease, the radical decomposition caused by Phytophthora Cinnamomi is remarkable for its gravity, which makes it necessary to reforest the trees and to monitor the microclimatic factors that have an influence on this regeneration. Wireless Sensor Networks (WSN) are a technology in full evolution and development, as well as their appropriate use in cultivations that help to implement ecological techniques. With these considerations in this work five units/nodes with one or more sensors that allow different environmental readings have been developed. In this work, the acquisition of data obtained from different sensors has been achieved, allowing the monitoring of climatic elements such as soil moisture, air quality, temperature and humidity, rainfall intensity, precipitation level, wind speed and direction, luminous flux and atmospheric pressure. A web page has been designed where the user can consult the climatic conditions of the cultivation or reforestation. Different devices interconnected with a central unit have been developed where measurements of the cultivation are sent for its later analysis by the farmer. The microclimatic data acquisition developed in the WSN proposed in this paper allows a farmer to make decisions about the irrigation of the cultivation, use of fertilizers, the development and maturation phases of the cultivated products, obtaining the optimum stages of cultivation and harvesting.


Sign in / Sign up

Export Citation Format

Share Document