scholarly journals Medium Voltage Impedance-Admittance Measurement System Based on the Cascaded H-Bridge Multilevel Converter

2019 ◽  
Vol 22 (2) ◽  
pp. 105
Author(s):  
Marko Petkovic ◽  
Nicolai Hildebrandt ◽  
Francisco D. Freijedo ◽  
Drazen Dujic

Recent trends in power system design such as an increasing share of renewable energy sources and smart grids are creating different subsystem interactions that require proper investigation, understanding, describing and estimating global system stability through impedance-admittance measurement and identification. This paper proposes and presents the cascaded H-bridge multilevel inverter topology for perturbation injection converter and impedance-admittance measurement. The methodology of impedance-admittance measurement is explained together with different measurements requirements. Performance and suitability of this topology for impedance-admittance measurement is evaluated through simulations. Preliminary design principles are given for the converter. System level feasibility of the solution is proposed as a main result of the work.

2020 ◽  
Vol 9 (6) ◽  
pp. 2222-2234
Author(s):  
Mohammed Salheen Alatshan ◽  
Ibrahim Alhamrouni ◽  
Tole Sutikno ◽  
Awang Jusoh

The major drivers of the quest for optimal placement of flexible alternating current transmission system (FACTS) devices are the quest for smart grids and economic indicators. The demand for energy and power stability will continue much as the astronomic growth in industries and increase in global population remains. The aim of this paper is to deliver a panoramic view of the use of static synchronous compensator (STATCOM) in combination with energy storage system (ESS) in order to enhance power stability. In this paper, it was observed that application of ESS is an important factor in attaining power stability and mitigating the effect of dynamics associated with the power supply system. The miniaturization of batteries and adequate placement of STATCOMs will be a challenge much as new power system are built or existing ones are expanded. The future of ESS is towards the adoption of renewable energy sources as against batteries. 


2018 ◽  
Vol 924 ◽  
pp. 875-878 ◽  
Author(s):  
Shi Qi Ji ◽  
Xiao Jie Shi ◽  
Zhe Yu Zhang ◽  
Wen Chao Cao ◽  
Fred Wang

This paper evaluates potential benefits of high voltage (HV) SiC devices in medium voltage (MV) distribution grids. The MV microgrid, that HV SiC devices can benefit most, is selected as the “killer application” and focused in this paper. The design and simulation are carried out to compare Si-and SiC-based grid interface converters for the quantitative benefit assessment both at converter level and system level. The SiC-based converter has significant benefits in weight and size, and shows enhanced performance and functionality on power quality, system stability and low voltage ride through (LVRT) as well.


2019 ◽  
Vol 28 (04) ◽  
pp. 1950064 ◽  
Author(s):  
S. A. Ahamed Ibrahim ◽  
P. Anbalagan ◽  
M. A. Jagabar Sathik

In this paper, a new asymmetric switched diode (ASD) multilevel inverter is presented for medium-voltage and high-power applications. The proposed converter consists of series connection basic unit with full-bridge inverter. In addition to this, a cascaded switched diode (CSD) structure is recommended to generate the higher number of voltage levels. Seven different algorithms are presented to determine the magnitudes of DC sources in CSD topology. To prove the advantages of proposed multilevel converter over recent multilevel converters in terms of blocking voltage, numbers of IGBTs and on-state switches are presented. To show the authority of the proposed multilevel inverter, it is simulated using MATLAB/Simulink and is experimentally tested using prototype model for 13-level inverter. Finally, various output voltage and current waveforms are shown to prove the dynamic behavior of proposed inverter.


Author(s):  
Motaparthi Nagaraju ◽  
Malligunta Kiran Kumar

<p>Usage of high power and medium voltage applications in domestic and industrial purpose has been increased in the recent years. Also, the penetration of renewable energy sources is increasing rapidly. To make use the renewable energy sources there is a need of using inverters. The basic inverter is conventional two level inverter which produces the square wave output voltage. The major drawback of conventional inverter is it contains more harmonics. Therefore, multilevel inverters have been introduced with staircase output voltage waveform. Lot of multilevel inverter topologies have been developed and cascaded H bridge type is the more frequently used. But, it requires more number of switches for higher output voltage level. In this paper, a novel 7 level asymmetrical multilevel inverter topology is proposed with less number of switches. This proposed topology is compared with already existing topology. The simulation of circuit and result analysis of the circuit is carried out by using Matlab/simulink software. The comparison between existing topology and proposed topology is given. The results are discussed and presented.</p>


Author(s):  
Valeria Olivieri ◽  
Maurizio Delfanti ◽  
Luca Lo Schiavo

Abstract The integration of Dispersed Generation (DG) is by far the most important and challenging issue that modern power systems are facing nowadays, and is the only way of exploiting Renewable Energy Sources (RES) for electric production. This revolution is running particularly fast in Europe, where significant incentive schemes have been promoted by many Member States in order to match the targets decided by the European institutions. As a consequence of the important share of RES already connected (especially to low voltage and medium voltage networks), new technical challenges have to be faced both at a distribution network level and at a transmission system level. Some of these challenges are covered by Smart grids that represent a new framework for improved management of distribution and transmission networks with attention to interoperability, security, resilience problems, and quality of service (QoS). It is recognized that an intelligent use of Information and Communication Technology (ICT), as enabling technology, is the only approach able to solve new problems arising on energy networks due to larger DG penetration, without hindering system security and QoS.The paper focuses on the Italian case and in particular on the Italian regulatory framework for developing Smart Grids, and describes the technical foundations of the regulatory innovations introduced by the Italian energy regulatory authority (Autorità per l’energia elettrica e il gas - AEEG). After a selection process based on cost/benefit assessment, some demonstration projects for Smart Grid proposed by Distribution System Operators have been awarded with special capital cost remuneration (extra WACC of 2% for 12 years, on top of the ordinary WACC equal to 7% for distribution investments). The smart grid demonstration projects founded by AEEG introduce and test a new advanced management of DG in order to avoid the problems coming from reverse power flowing and maintain the necessary level of security, availability and quality of service.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7249
Author(s):  
Jagabar Sathik ◽  
Shady H. E. Abdel Aleem ◽  
Rasoul Shalchi Alishah ◽  
Dhafer Almakhles ◽  
Kent Bertilsson ◽  
...  

This paper presents a new multilevel converter with a reduced number of power components for medium voltage applications. Both symmetric and asymmetric structures of the presented multilevel converter are proposed. The symmetric topology requires equal dc source values, whereas the asymmetric topology uses minimum switch count. However, both structures suffer from high blocking voltage across the switches. To reduce the blocking voltage on switches, an optimal topology is presented and analyzed for the selection of the minimum number of switches and dc sources, while maintaining a low blocking voltage across the switches. A comparative analysis with recently published topologies was performed. The simulation results, as well as the comparative analysis, validated the robustness and effectiveness of the proposed topology in terms of the reduced power loss, lowered number of components, and cost. Furthermore, in addition to the simulation results, the performance of the proposed topology was verified using experimental results of 9, 17, and 25 levels.


2020 ◽  
pp. 28-37
Author(s):  
Oleksandra V. Kubatko ◽  
Diana O. Yaryomenko ◽  
Mykola O. Kharchenko ◽  
Ismail Y. A. Almashaqbeh

Interruptions in electricity supply may have a series of failures that can affect banking, telecommunications, traffic, and safety sectors. Due to the two-way interactive abilities, Smart Grid allows consumers to automatically redirect on failure, or shut down of the equipment. Smart Grid technologies are the costly ones; however, due to the mitigation of possible problems, they are economically sound. Smart grids can't operate without smart meters, which may easily transmit real-time power consumption data to energy data centers, helping the consumer to make effective decisions about how much energy to use and at what time of day. Smart Grid meters do allow the consumer to track and reduce energy consumption bills during peak hours and increase the corresponding consumption during minimum hours. At a higher level of management (e.g., on the level of separate region or country), the Smart Grid distribution system operators have the opportunity to increase the reliability of power supply primarily by detecting or preventing emergencies. Ukraine's energy system is currently outdated and cannot withstand current loads. High levels of wear of the main and auxiliary equipment of the power system and uneven load distribution in the network often lead to emergencies and power outages. The Smart Grid achievements and energy sustainability are also related to the energy trilemma, which consists of key core dimensions– Energy Security, Energy Equity, and Environmental Sustainability. To be competitive in the world energy market, the country has to organize efficiently the cooperation of public/private actors, governments, economic and social agents, environmental issues, and individual consumer behaviors. Ukraine gained 61 positions out of 128 countries in a list in 2019 on the energy trilemma index. In general, Ukraine has a higher than average energy security position and lower than average energy equity, and environmental sustainability positions. Given the fact that the number of renewable energy sources is measured in hundreds and thousands, network management is complicated and requires a Smart Grid rapid response. Keywords: economic development, Smart Grid, electricity supply, economic and environmental efficiency.


Sign in / Sign up

Export Citation Format

Share Document