A New Asymmetric and Cascaded Switched Diode Multilevel Inverter Topology for Reduced Switches, DC Source and Blocked Voltage on Switches

2019 ◽  
Vol 28 (04) ◽  
pp. 1950064 ◽  
Author(s):  
S. A. Ahamed Ibrahim ◽  
P. Anbalagan ◽  
M. A. Jagabar Sathik

In this paper, a new asymmetric switched diode (ASD) multilevel inverter is presented for medium-voltage and high-power applications. The proposed converter consists of series connection basic unit with full-bridge inverter. In addition to this, a cascaded switched diode (CSD) structure is recommended to generate the higher number of voltage levels. Seven different algorithms are presented to determine the magnitudes of DC sources in CSD topology. To prove the advantages of proposed multilevel converter over recent multilevel converters in terms of blocking voltage, numbers of IGBTs and on-state switches are presented. To show the authority of the proposed multilevel inverter, it is simulated using MATLAB/Simulink and is experimentally tested using prototype model for 13-level inverter. Finally, various output voltage and current waveforms are shown to prove the dynamic behavior of proposed inverter.

Author(s):  
Nikhil Agrawal

Multilevel inverter is a modified version of inverter. Multilevel inverter recently emerged in the area of high power and medium voltage application. In the last few decades, the great innovation has been done to improve the inverter performance, and it is challenging even today. The multilevel inverter performance is examined by total harmonic distortion and component required. In multilevel, as level increases, the total harmonic distortion value decreases, but the number of components required and driver circuit increases that make the circuit more complex and also the effect on cost. So, the challenge is to balance the bridge between cost and total harmonic distortion. This chapter simulates the various levels of conventional cascade H-bridge inverter and new proposed topology of multilevel inverter with using different modulation techniques and with using filter circuit and without filter circuit.


2019 ◽  
Vol 16 (1) ◽  
pp. 18 ◽  
Author(s):  
Thiyagarajan V ◽  
Somasundaran P

Multilevel inverter plays an important role in the field of modern power electronics and is widely being used for many high voltage and high power industrial and commercial applications. The objective of this paper is to design and simulate the modified asymmetric multilevel inverter topology with reduced number of switches. The proposed inverter topology synthesizes 21-level output voltage during symmetric operation using three DC voltage sources and twelve switches 8 main switches and 4 auxiliary switches. The different methods of calculating the switching angles are presented in this paper. The MATLAB/Simulink software is used to simulate the proposed inverter. The performance of the proposed inverter is analyzed and the corresponding simulation results are presented in this paper.


Author(s):  
Motaparthi Nagaraju ◽  
Malligunta Kiran Kumar

<p>Usage of high power and medium voltage applications in domestic and industrial purpose has been increased in the recent years. Also, the penetration of renewable energy sources is increasing rapidly. To make use the renewable energy sources there is a need of using inverters. The basic inverter is conventional two level inverter which produces the square wave output voltage. The major drawback of conventional inverter is it contains more harmonics. Therefore, multilevel inverters have been introduced with staircase output voltage waveform. Lot of multilevel inverter topologies have been developed and cascaded H bridge type is the more frequently used. But, it requires more number of switches for higher output voltage level. In this paper, a novel 7 level asymmetrical multilevel inverter topology is proposed with less number of switches. This proposed topology is compared with already existing topology. The simulation of circuit and result analysis of the circuit is carried out by using Matlab/simulink software. The comparison between existing topology and proposed topology is given. The results are discussed and presented.</p>


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1810 ◽  
Author(s):  
Muhyaddin Rawa ◽  
Marif Daula Siddique ◽  
Saad Mekhilef ◽  
Noraisyah Mohamed Shah ◽  
Hussain Bassi ◽  
...  

Multilevel inverters are proficient in achieving a high-quality staircase output voltage waveform with a lower amount of harmonic content. In this paper, a new hybrid multilevel inverter topology based on the T-type and H-bridge module is presented. The proposed topology aims to achieve a higher number of levels utilizing a lower number of switches, direct current (dc) voltage sources, and voltage stresses across different switches. The basic unit of the proposed single T-type and double H-bridge multilevel inverter (STDH-MLI) produces 15 levels at the output using three dc voltage sources. The proposed topology can be extended by connecting a larger number of dc voltage sources in the T-type section. The nearest level control (NLC) switching technique is used to generate gate pulses for switches to achieve a high-quality output voltage waveform. In addition, a simplified way to achieve NLC is also described in the paper. A detailed comparison with other similar topologies is provided to set the benchmark of the proposed topology. Finally, experimental work is carried out to validate the performance of the proposed topology.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7249
Author(s):  
Jagabar Sathik ◽  
Shady H. E. Abdel Aleem ◽  
Rasoul Shalchi Alishah ◽  
Dhafer Almakhles ◽  
Kent Bertilsson ◽  
...  

This paper presents a new multilevel converter with a reduced number of power components for medium voltage applications. Both symmetric and asymmetric structures of the presented multilevel converter are proposed. The symmetric topology requires equal dc source values, whereas the asymmetric topology uses minimum switch count. However, both structures suffer from high blocking voltage across the switches. To reduce the blocking voltage on switches, an optimal topology is presented and analyzed for the selection of the minimum number of switches and dc sources, while maintaining a low blocking voltage across the switches. A comparative analysis with recently published topologies was performed. The simulation results, as well as the comparative analysis, validated the robustness and effectiveness of the proposed topology in terms of the reduced power loss, lowered number of components, and cost. Furthermore, in addition to the simulation results, the performance of the proposed topology was verified using experimental results of 9, 17, and 25 levels.


In power electronics, Multilevel Inverter (MLI) plays very important role. It has spectacular applications in the field of high power & medium voltage energy control. The simulation of “Fifteen Level Cascaded H-Bridge Multilevel Inverter (MLI) Fed Induction Motor” is studied in this paper. The MLI’s are used to get high magnitude output voltage with reduced harmonic distortion. The reduction of harmonic distortion and the purity of the output waveform when compared with five level and nine level multilevel inverters is seen in this paper.


2021 ◽  
Vol 17 (1) ◽  
pp. 1-13
Author(s):  
Adala Abdali ◽  
Ali Abdulabbas ◽  
Habeeb Nekad

The multilevel inverter is attracting the specialist in medium and high voltage applications, among its types, the cascade H bridge Multi-Level Inverter (MLI), commonly used for high power and high voltage applications. The main advantage of the conventional cascade (MLI) is generated a large number of output voltage levels but it demands a large number of components that produce complexity in the control circuit, and high cost. Along these lines, this paper presents a brief about the non-conventional cascade multilevel topologies that can produce a high number of output voltage levels with the least components. The non-conventional cascade (MLI) in this paper was built to reduce the number of switches, simplify the circuit configuration, uncomplicated control, and minimize the system cost. Besides, it reduces THD and increases efficiency. Two topologies of non-conventional cascade MLI three phase, the Nine level and Seventeen level are presented. The PWM technique is used to control the switches. The simulation results show a better performance for both topologies. THD, the power loss and the efficiency of the two topologies are calculated and drawn to the different values of the Modulation index (ma).


Author(s):  
Chinnapettai Ramalingam Balamurugan ◽  
S.P. Natarajan ◽  
T.S. Anandhi

The multi level inverter system is habitually exploited in AC drives, when both reduced harmonic contents and high power are required. In this paper, a new topology for three phase asymmetrical multilevel inverter employing reduced number of switches is introduced. With less number of switches, the cost, space and weight of the circuit are automatically reduced. This paper discusses the new topology, the switching strategies and the operational principles of the chosen inverter. Simulation is carried out using MATLAB-SIMULINK. Various conventional PWM techniques that are appropriate to the chosen circuit such as PDPWM, PODPWM, APODPWM, VFPWM and COPWM are employed in this work. COPWM technique affords the less THD value and also affords a higher fundamental RMS output voltage.


Sign in / Sign up

Export Citation Format

Share Document