scholarly journals Peer Review #1 of "16S rRNA metagenomic analysis of the bacterial community associated with turf grass seeds from low moisture and high moisture climates (v0.3)"

Author(s):  
A Wong Villarreal
PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8417 ◽  
Author(s):  
Qiang Chen ◽  
William A. Meyer ◽  
Qiuwei Zhang ◽  
James F. White

Turfgrass investigators have observed that plantings of grass seeds produced in moist climates produce seedling stands that show greater stand evenness with reduced disease compared to those grown from seeds produced in dry climates. Grass seeds carry microbes on their surfaces that become endophytic in seedlings and promote seedling growth. We hypothesize that incomplete development of the microbiome associated with the surface of seeds produced in dry climates reduces the performance of seeds. Little is known about the influence of moisture on the structure of this microbial community. We conducted metagenomic analysis of the bacterial communities associated with seeds of three turf species (Festuca rubra, Lolium arundinacea, and Lolium perenne) from low moisture (LM) and high moisture (HM) climates. The bacterial communities were characterized by Illumina high-throughput sequencing of 16S rRNA V3–V4 regions. We performed seed germination tests and analyzed the correlations between the abundance of different bacterial groups and seed germination at different taxonomy ranks. Climate appeared to structure the bacterial communities associated with seeds. LM seeds vectored mainly Proteobacteria (89%). HM seeds vectored a denser and more diverse bacterial community that included Proteobacteria (50%) and Bacteroides (39%). At the genus level, Pedobacter (20%), Sphingomonas (13%), Massilia (12%), Pantoea (12%) and Pseudomonas (11%) were the major genera in the bacterial communities regardless of climate conditions. Massilia, Pantoea and Pseudomonas dominated LM seeds, while Pedobacter and Sphingomonas dominated HM seeds. The species of turf seeds did not appear to influence bacterial community composition. The seeds of the three turf species showed a core microbiome consisting of 27 genera from phyla Actinobacteria, Bacteroidetes, Patescibacteria and Proteobacteria. Differences in seed-vectored microbes, in terms of diversity and density between high and LM climates, may result from effects of moisture level on the colonization of microbes and the development of microbe community on seed surface tissues (adherent paleas and lemmas). The greater diversity and density of seed vectored microbes in HM climates may benefit seedlings by helping them tolerate stress and fight disease organisms, but this dense microbial community may also compete with seedlings for nutrients, slowing or modulating seed germination and seedling growth.


2021 ◽  
Vol 9 (6) ◽  
pp. 1225
Author(s):  
Shanshan Zhao ◽  
Fengyuan Yang ◽  
Yuan Wang ◽  
Xiaomiao Fan ◽  
Changsong Feng ◽  
...  

The aim of this study was to gain deeper insights into the dynamics of fermentation parameters and the bacterial community during the ensiling of high-moisture alfalfa. A commercial lactic acid bacteria (YX) inoculant was used as an additive. After 15 and 30 days of ensiling, the control silage (CK) exhibited a high pH and a high concentration of ammoniacal nitrogen (NH3-N); Enterobacter and Hafnia-Obesumbacterium were the dominant genera. At 60 d, the pH value and the concentration of NH3-N in CK silage increased compared with 15 and 30 d, propionic acid and butyric acid (BA) were detected, and Garciella had the highest abundance in the bacterial community. Compared with CK silage, inoculation of YX significantly promoted lactic acid and acetic acid accumulation and reduced pH and BA formation, did not significantly reduce the concentration of NH3-N except at 60 d, and significantly promoted the abundance of Lactobacillus and decreased the abundance of Garciella and Anaerosporobacter, but did not significantly inhibit the growth of Enterobacter and Hafnia-Obesumbacterium. In conclusion, high-moisture alfalfa naturally ensiled is prone to rot. Adding YX can delay the process of silage spoilage by inhibiting the growth of undesirable microorganisms to a certain extent.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Ju-Hyeong Park ◽  
Angela R. Lemons ◽  
Jerry Roseman ◽  
Brett J. Green ◽  
Jean M. Cox-Ganser

An amendment to this paper has been published and can be accessed via the original article.


2020 ◽  
Vol 41 (S1) ◽  
pp. s179-s180
Author(s):  
Erik Clarke ◽  
Kathleen None Chiotos ◽  
James Harrigan ◽  
Ebbing Lautenbach ◽  
Emily Reesey ◽  
...  

Background: Healthcare exposure results in significant microbiome disruption, particularly in the setting of critical illness, which may contribute to risk for healthcare-associated infections (HAIs). Patients admitted to long-term acute-care hospitals (LTACHs) have extensive prior healthcare exposure and critical illness; significant microbiome disruption has been previously documented among LTACH patients. We compared the predictive value of 3 respiratory tract microbiome disruption indices—bacterial community diversity, dominance, and absolute abundance—as they relate to risk for ventilator-associated pneumonia (VAP) and adverse ventilator-associated events (VAE), which commonly complicate LTACH care. Methods: We enrolled 83 subjects on admission to an academic LTACH for ventilator weaning and performed longitudinal sampling of endotracheal aspirates, followed by 16S rRNA gene sequencing (Illumina HiSeq), bacterial community profiling (QIIME2) for diversity, and 16S rRNA quantitative PCR (qPCR) for total bacterial abundance. Statistical analyses were performed with R and Stan software. Mixed-effects models were fit to relate the admission MDIs to subsequent clinically diagnosed VAP and VAE. Results: Of the 83 patients, 19 had been diagnosed with pneumonia during the 14 days prior to LTACH admission (ie, “recent past VAP”); 23 additional patients were receiving antibiotics consistent with empiric VAP therapy within 48 hours of admission (ie, “empiric VAP therapy”); and 41 patients had no evidence of VAP at admission (ie, “no suspected VAP”). We detected no statistically significant differences in admission Shannon diversity, maximum amplicon sequence variant (ASV)–level proportional abundance, or 16S qPCR across the variables of interest. In isolation, all 3 admission microbiome disruption indices showed poor predictive performance, though Shannon diversity performed better than maximum ASV abundance. Predictive models that combined (1) bacterial diversity or abundance with (2) recent prior VAP diagnosis and (3) concurrent antibiotic exposure best predicted 14-day VAP (type S error < 0.05) and 30-day VAP (type S error < 0.003). In this cohort, VAE risk was paradoxically associated with higher admission Shannon diversity and lower admission maximum ASV abundance. Conclusions: In isolation, respiratory tract microbiome disruption indices obtained at LTACH admission showed poor predictive performance for subsequent VAP and VAE. But diversity and abundance models incorporating recent VAP history and admission antibiotic exposure performed well predicting 14-day and 30-day VAP.Disclosures: NoneFunding: None


Sign in / Sign up

Export Citation Format

Share Document