floor dust
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 25)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hedieh Ahangar ◽  
Afsoon Karimdoost ◽  
Amir Salimi ◽  
Maryam Akhgari ◽  
Scott Phillips ◽  
...  

Abstract Background Ingestion and inhalation are common routes of exposure for lead in humans. Developing countries still have unacceptably high rates of lead toxicity, especially in children. Studies on probable risk factors of lead poisoning in Iranian children are insufficient. In this study, we aimed to evaluate possible environmental factors in children with high blood lead concentrations living in Tehran and neighboring cities. Methods In a prospective cross-sectional study between March 2018 and March 2019 we followed all children referred from two pediatric gastrointestinal clinics with blood lead level (BLL) > 5 μg/dL in metropolitan Tehran to investigate possible environmental risk factors in their home. Household specimens including scratched wall paint, house floor dust, windowsill dust, tap water, and consumed spice were evaluated using atomic absorption method to detect lead concentrations. Epidemiological and environmental data collected through in-depth interviews with parents/guardians. Industrial areas were defined based on municipality maps on industrial places. Results Thirty of 56 parents/guardians with BLL > 5 μg/dL agreed to be followed through environmental investigation. The only categorical statistically significant risk factor was a history of lead poisoning in the family and living in an industrial zone. There was a positive correlation between BLL and interior windowsills dust lead level, r = 0.46, p = 0.01. Scratched paint lead level and BLL showed a significant positive correlation, r = 0.50, p = 0.005. House floor dust lead level (median = 77.4, p < 0.001) and interior windowsill dust lead level (median = 291, p = 0.011) were both significantly higher than the environmental protection agency (EPA) standards of 40 μg/ft2, 250 μg/ft2. Interior windowsill dust lead concentrations were significantly higher in industrial areas (p = 0.026). Conclusion Children’s playing environment should be cleaned more often to reduce dust. Moreover, specific rules may need to be implemented for paint lead concentrations and air pollution, especially in industrial areas.


mSystems ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Nicole Renninger ◽  
Nicholas Nastasi ◽  
Ashleigh Bope ◽  
Samuel J. Cochran ◽  
Sarah R. Haines ◽  
...  

ABSTRACT Ongoing disease surveillance is a critical tool to mitigate viral outbreaks, especially during a pandemic. Environmental monitoring has significant promise even following widespread vaccination among high-risk populations. The goal of this work is to demonstrate molecular severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monitoring in bulk floor dust and related samples as a proof of concept of a noninvasive environmental surveillance methodology for coronavirus disease 2019 (COVID-19) and potentially other viral diseases. Surface swab, passive sampler, and bulk floor dust samples were collected from the rooms of individuals positive for COVID-19, and SARS-CoV-2 was measured with quantitative reverse transcription-PCR (RT-qPCR) and two digital PCR (dPCR) methods. Bulk dust samples had a geometric mean concentration of 163 copies/mg of dust and ranged from nondetects to 23,049 copies/mg of dust detected using droplet digital PCR (ddPCR). An average of 89% of bulk dust samples were positive for the virus by the detection methods compared to 55% of surface swabs and fewer on the passive sampler (19% carpet, 29% polystyrene). In bulk dust, SARS-CoV-2 was detected in 76%, 93%, and 97% of samples measured by qPCR, chip-based dPCR, and droplet dPCR, respectively. Detectable viral RNA in the bulk vacuum bags did not measurably decay over 4 weeks, despite the application of a disinfectant before room cleaning. Future monitoring efforts should further evaluate RNA persistence and heterogeneity in dust. This study did not measure virus infectivity in dust or potential transmission associated with dust. Overall, this work demonstrates that bulk floor dust is a potentially useful matrix for long-term monitoring of viral disease in high-risk populations and buildings. IMPORTANCE Environmental surveillance to assess pathogen presence within a community is proving to be a critical tool to protect public health, and it is especially relevant during the ongoing COVID-19 pandemic. Importantly, environmental surveillance tools also allow for the detection of asymptomatic disease carriers and for routine monitoring of a large number of people as has been shown for SARS-CoV-2 wastewater monitoring. However, additional monitoring techniques are needed to screen for outbreaks in high-risk settings such as congregate care facilities. Here, we demonstrate that SARS-CoV-2 can be detected in bulk floor dust collected from rooms housing infected individuals. This analysis suggests that dust may be a useful and efficient matrix for routine surveillance of viral disease.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Ju-Hyeong Park ◽  
Angela R. Lemons ◽  
Jerry Roseman ◽  
Brett J. Green ◽  
Jean M. Cox-Ganser

An amendment to this paper has been published and can be accessed via the original article.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Ju-Hyeong Park ◽  
Angela R. Lemons ◽  
Jerry Roseman ◽  
Brett J. Green ◽  
Jean M. Cox-Ganser

AbstractCharacterizing indoor microbial communities using molecular methods provides insight into bacterial assemblages present in environments that can influence occupants’ health. We conducted an environmental assessment as part of an epidemiologic study of 50 elementary schools in a large city in the northeastern USA. We vacuumed dust from the edges of the floor in 500 classrooms accounting for 499 processed dust aliquots for 16S Illumina MiSeq sequencing to characterize bacterial assemblages. DNA sequences were organized into operational taxonomic units (OTUs) and identified using a database derived from the National Center for Biotechnology Information. Bacterial diversity and ecological analyses were performed at the genus level. We identified 29 phyla, 57 classes, 148 orders, 320 families, 1193 genera, and 2045 species in 3073 OTUs. The number of genera per school ranged from 470 to 705. The phylum Proteobacteria was richest of all while Firmicutes was most abundant. The most abundant order included Lactobacillales, Spirulinales, and Clostridiales. Halospirulina was the most abundant genus, which has never been reported from any school studies before. Gram-negative bacteria were more abundant and richer (relative abundance = 0.53; 1632 OTUs) than gram-positive bacteria (0.47; 1441). Outdoor environment-associated genera were identified in greater abundance in the classrooms, in contrast to homes where human-associated bacteria are typically more abundant. Effects of school location, degree of water damage, building condition, number of students, air temperature and humidity, floor material, and classroom’s floor level on the bacterial richness or community composition were statistically significant but subtle, indicating relative stability of classroom microbiome from environmental stress. Our study indicates that classroom floor dust had a characteristic bacterial community that is different from typical house dust represented by more gram-positive and human-associated bacteria. Health implications of exposure to the microbiomes in classroom floor dust may be different from those in homes for school staff and students.


2021 ◽  
Author(s):  
Nicole Renninger ◽  
Nick Nastasi ◽  
Ashleigh Bope ◽  
Samuel J. Cochran ◽  
Sarah R. Haines ◽  
...  

AbstractOngoing disease surveillance is a critical tool to mitigate viral outbreaks, especially during a pandemic. Environmental monitoring has significant promise even following widespread vaccination among high-risk populations. The goal of this work is to demonstrate molecular SARS-CoV-2 monitoring in bulk floor dust and related samples as a proof-of-concept of a non-invasive environmental surveillance methodology for COVID-19 and potentially other viral diseases. Surface swab, passive sampler, and bulk floor dust samples were collected from rooms of individuals infected with COVID-19, and SARS-CoV-2 was measured with quantitative reverse transcription polymerase chain reaction (RT-qPCR) and two digital PCR (dPCR) methods. Bulk dust samples had geometric mean concentration of 159 copies/mg-dust and ranged from non-detects to 23,049 copies/mg-dust detected using ddPCR. An average of 88% of bulk dust samples were positive for the virus among detection methods compared to 55% of surface swabs and fewer on the passive sampler (19% carpet, 29% polystyrene). In bulk dust, SARS-CoV-2 was detected in 76%, 93%, and 97% of samples measured by qPCR, chip-based dPCR, and droplet dPCR respectively. Detectable viral RNA in the bulk vacuum bags did not measurably decay over 4 weeks, despite the application of a disinfectant before room cleaning. Future monitoring efforts should further evaluate RNA persistence and heterogeneity in dust. This study did not measure virus viability in dust or potential transmission associated with dust. Overall, this work demonstrates that bulk floor dust is a potentially useful matrix for long-term monitoring of viral disease outbreaks in high-risk populations and buildings.ImportanceEnvironmental surveillance to assess pathogen presence within a community is proving to be a critical tool to protect public health, and it is especially relevant during the ongoing COVID-19 pandemic. Importantly, environmental surveillance tools also allow for the detection of asymptomatic disease carriers and for routine monitoring of a large number of people as has been shown for SARS-CoV-2 wastewater monitoring. However, additional monitoring techniques are needed to screen for outbreaks in high-risk settings such as congregate care facilities. Here, we demonstrate that SARS-CoV-2 can be detected in bulk floor dust collected from rooms housing infected individuals. This analysis suggests that dust may be a useful and efficient matrix for routine surveillance of viral disease outbreaks.


2021 ◽  
Author(s):  
Daniel Martins Figueiredo ◽  
Rosalie Nijssen ◽  
Esmeralda Krop ◽  
Daan Buijtenhuijs ◽  
Yvonne Gooijer ◽  
...  

2020 ◽  
Vol 744 ◽  
pp. 140762
Author(s):  
Morteza Sabouhi ◽  
Mohammad Saleh Ali-Taleshi ◽  
Anna Bourliva ◽  
Farhad Nejadkoorki ◽  
Stefania Squizzato

2020 ◽  
Author(s):  
Ju-Hyeong Park ◽  
Angela R. Lemons ◽  
Jerry Roseman ◽  
Brett J. Green ◽  
Jean M. Cox-Ganser

Abstract Characterizing indoor microbial communities using molecular methods provides insight into bacterial assemblages present in environments that can influence occupants’ health. We conducted an environmental assessment as part of an epidemiologic study of 50 elementary schools in a large city in the northeastern United States. We vacuumed dust from the edges of the floor in 500 classrooms accounting for 499 processed dust aliquots for 16S Illumina MiSeq sequencing to characterize bacterial assemblages. DNA sequences were organized into operational taxonomic units (OTUs) and identified using a database derived from the National Center for Biotechnology Information. Bacterial diversity and ecological analyses were performed at the genus level. We identified 29 phyla, 57 classes, 148 orders, 320 families, 1,193 genera, and 2,045 species in 3,073 OTUs. The number of genera per school ranged from 470 to 705. The phylum Proteobacteria was richest, followed by Firmicutes, Actinobacteria, Bacteroidetes, and Cyanobacteria while Firmicutes was most abundant. The most abundant order included Lactobacillales, Spirulinales, Clostridiales, Bacteroidales, Pseudomonadales, and Micrococcales. Halospirulina was the most abundant genus (the only genus within the order Spirulinales), followed by Lactobacillus, Streptococcus, Sphingomonas, Clostridium, and Pseudomonas. Gram-negative bacteria were more abundant and richer (relative abundance=0.53;1,632 OTUs) than gram-positive bacteria (0.47; 1,441). The Bray-Curtis dissimilarity index ranged from 0.22 to 0.63, with a median of 0.40. Effects of school location, degree of water damage, building condition, number of students, air temperature and humidity, floor material, and classroom’s floor level on the bacterial richness or community composition were statistically significant but subtle. Our study indicates that classroom floor dust had a characteristic bacterial community represented by more gram-negative bacteria, in comparison to typical house dust that is represented by more gram-positive bacteria. Health implications of exposure to the microbiomes in classroom floor dust may be different from those in homes for school staff and students.


2020 ◽  
Author(s):  
Ju-Hyeong Park ◽  
Angela R. Lemons ◽  
Jerry Roseman ◽  
Brett J. Green ◽  
Jean M. Cox-Ganser

Abstract Characterizing indoor microbial communities using molecular methods provides insight into bacterial assemblages present in environments that can influence occupants’ health. We conducted an environmental assessment as part of an epidemiologic study of 50 elementary schools in a large city in the northeastern United States. We vacuumed dust from the edges of the floor in 500 classrooms accounting for 499 processed dust aliquots for 16S Illumina MiSeq sequencing to characterize bacterial assemblages. DNA sequences were organized into operational taxonomic units (OTUs) and identified using a database derived from the National Center for Biotechnology Information. Bacterial diversity and ecological analyses were performed at the genus level. We identified 29 phyla, 57 classes, 148 orders, 320 families, 1,193 genera, and 2,045 species in 3,073 OTUs. The number of genera per school ranged from 470 to 705. The phylum Proteobacteria was richest, followed by Firmicutes, Actinobacteria, Bacteroidetes, and Cyanobacteria while Firmicutes was most abundant. The most abundant order included Lactobacillales, Spirulinales, Clostridiales, Bacteroidales, Pseudomonadales, and Micrococcales. Halospirulina was the most abundant genus (the only genus within the order Spirulinales), followed by Lactobacillus, Streptococcus, Sphingomonas, Clostridium, and Pseudomonas. Gram-negative bacteria were more abundant and richer (relative abundance=0.53;1,632 OTUs) than gram-positive bacteria (0.47; 1,441). The Bray-Curtis dissimilarity index ranged from 0.22 to 0.63, with a median of 0.40. Effects of school location, degree of water damage, building condition, number of students, air temperature and humidity, floor material, and classroom’s floor level on the bacterial richness or community composition were statistically significant but subtle. Our study indicates that classroom floor dust had a characteristic bacterial community represented by more gram-negative bacteria, in comparison to typical house dust that is represented by more gram-positive bacteria. Health implications of exposure to the microbiomes in classroom floor dust may be different from those in homes for school staff and students.


Sign in / Sign up

Export Citation Format

Share Document