scholarly journals Multifarious native plant growth promoting fluorescent pseudomonads associated with rhizosphere of Aloe barbadensis miller

Author(s):  
Anuradha Rai ◽  
Pradeep K Rai ◽  
Jay S Singh ◽  
Surendra Singh

Medicinal plants provide an enormous bioresource of potential use in modern medicine and agriculture. Phosphorous deficiency is a major constraint to plant production. Sustainable agriculture could be promoted by harnessing the plant beneficial bacteria particularly the fluorescent pseudomonads associated with the rhizosphere of plants, to mobilize soil inorganic phosphate and also to increase its bioavailability to the plants. Total five hundred seven fluorescent Pseudomonas isolates were obtained from four different Aloe barbadensis (Miller) growing locations of Varanasi. These Pseudomonas strains were further evaluated in vitro for their ability to solubilize phosphate and to produce indole acetic acid (IAA), hydrogen cyanide (HCN), siderophore and aminocyclopropane (ACC) deaminase. Total 119 fluorescent Pseudomonas isolates from the rhizospheric soil (RS) and 25 isolates from the endorhizosperic (ER) region solubilized phosphate.Whereas 53 (36.8%) Pseudomonas isolates produced IAA and siderophore, 36(25%) and 31 (21.5%) isolates, however, produced HCN and ACC deaminase. Out of 119 phosphate solubilizing bacteria (PSB) from RS region, 51 (42.9%) isolates and 9 (36%) isolates out of 25 PSBs from ER region lacked plant growth promoting traits (PGPTs). Among the phosphate solubilizing fluorescent pseudomonads showing PGPT, 59 isolates have multiple traits and showed more than two types of PGPT. A positive correlation exists between siderophore and ACC deaminase producers. Clustering by principal component analysis (PCA) showed that RS was the most important factor influencing the ecological distribution and physiological characterization of PGPT- possessing PSB. Geographical Information System (GIS) and Kriging Interpolation method was used to map and establish spatial variation of soil properties of the study site.

2016 ◽  
Author(s):  
Anuradha Rai ◽  
Pradeep K Rai ◽  
Jay S Singh ◽  
Surendra Singh

Medicinal plants provide an enormous bioresource of potential use in modern medicine and agriculture. Phosphorous deficiency is a major constraint to plant production. Sustainable agriculture could be promoted by harnessing the plant beneficial bacteria particularly the fluorescent pseudomonads associated with the rhizosphere of plants, to mobilize soil inorganic phosphate and also to increase its bioavailability to the plants. Total five hundred seven fluorescent Pseudomonas isolates were obtained from four different Aloe barbadensis (Miller) growing locations of Varanasi. These Pseudomonas strains were further evaluated in vitro for their ability to solubilize phosphate and to produce indole acetic acid (IAA), hydrogen cyanide (HCN), siderophore and aminocyclopropane (ACC) deaminase. Total 119 fluorescent Pseudomonas isolates from the rhizospheric soil (RS) and 25 isolates from the endorhizosperic (ER) region solubilized phosphate.Whereas 53 (36.8%) Pseudomonas isolates produced IAA and siderophore, 36(25%) and 31 (21.5%) isolates, however, produced HCN and ACC deaminase. Out of 119 phosphate solubilizing bacteria (PSB) from RS region, 51 (42.9%) isolates and 9 (36%) isolates out of 25 PSBs from ER region lacked plant growth promoting traits (PGPTs). Among the phosphate solubilizing fluorescent pseudomonads showing PGPT, 59 isolates have multiple traits and showed more than two types of PGPT. A positive correlation exists between siderophore and ACC deaminase producers. Clustering by principal component analysis (PCA) showed that RS was the most important factor influencing the ecological distribution and physiological characterization of PGPT- possessing PSB. Geographical Information System (GIS) and Kriging Interpolation method was used to map and establish spatial variation of soil properties of the study site.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1071
Author(s):  
Minchong Shen ◽  
Jiangang Li ◽  
Yuanhua Dong ◽  
Hong Liu ◽  
Junwei Peng ◽  
...  

Microbial treatment has recently been attracting attention as a sustainable agricultural strategy addressing the current problems caused by unreasonable agricultural practices. However, the mechanism through which microbial inoculants promote plant growth is not well understood. In this study, two phosphate-solubilizing bacteria (PSB) were screened, and their growth-promoting abilities were explored. At day 7 (D7), the lengths of the root and sprout with three microbial treatments, M16, M44, and the combination of M16 and M44 (Com), were significantly greater than those with the non-microbial control, with mean values of 9.08 and 4.73, 7.15 and 4.83, and 13.98 and 5.68 cm, respectively. At day 14 (D14), M16, M44, and Com significantly increased not only the length of the root and sprout but also the underground and aboveground biomass. Differential metabolites were identified, and various amino acids, amino acid derivatives, and other plant growth-regulating molecules were significantly enhanced by the three microbial treatments. The profiling of key metabolites associated with plant growth in different microbial treatments showed consistent results with their performances in the germination experiment, which revealed the metabolic mechanism of plant growth-promoting processes mediated by screened PSB. This study provides a theoretical basis for the application of PSB in sustainable agriculture.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jinge Xie ◽  
Zongqiang Yan ◽  
Guifen Wang ◽  
Wenzhi Xue ◽  
Cong Li ◽  
...  

Phosphorus in the soil accessible to plants can easily be combined with calcium ion, the content of which is high in karst rocky desertification (KRD) regions, thereby resulting in a low utilization efficiency of phosphorus. The application of phosphate-solubilizing bacteria (PSB) from the KRD region would facilitate enhanced phosphate availability in the soil. In the present study, the strains belonging to Acinetobacter, Paraburkholderia, and Pseudomonas with efficient phosphate-solubilizing ability were isolated from fruit tree rhizosphere soils in KRD regions. Particularly, Acinetobacter sp. Ac-14 had a sustained and stable phosphate-solubilizing ability (439–448 mg/L, 48–120 h). Calcium carbonate decreased the phosphate-solubilizing ability in liquid medium; however, it did not affect the solubilization index in agar-solidified medium. When cocultivated with Arabidopsis thaliana seedling, Ac-14 increased the number of lateral roots, fresh weight, and chlorophyll content of the seedlings. Metabolomics analysis revealed that Ac-14 could produce 23 types of organic acids, majorly including gluconic acid and D-(-)-quinic acid. Expression of Ac-14 glucose dehydrogenase gene (gcd) conferred Pseudomonas sp. Ps-12 with a sustained and stable phosphate-solubilizing ability, suggesting that the production of gluconic acid is an important mechanism that confers phosphate solubilization in bacteria. Moreover, Ac-14 could also produce indole acetic acid and ammonia. Collectively, the isolated Ac-14 from KRD regions possess an efficient phosphate-solubilizing ability and plant growth-promoting effect which could be exploited for enhancing phosphorus availability in KRD regions. This study holds significance for the improvement of soil fertility and agricultural sustainable development in phosphorus-deficient KRD regions.


2007 ◽  
Vol 2 (3) ◽  
pp. 326-333 ◽  
Author(s):  
A. Vikram ◽  
H. Hamzehzarghani . ◽  
A.R. Alagawadi . ◽  
P.U. Krishnaraj . ◽  
B.S. Chandrashekar .

Author(s):  
Jeet Kamal ◽  
Baldi Ashish

Sustainable plant production with the integration of eco-friendly agricultural practices, low chemical inputs, minimal deleterious effects on human health and low cost methods, is the need of the moment. In this direction, scientific/industrial community, continuously exploring novel and reliable methods. Plant growth promoting microbes are proving more promising to achieve eco-friendly and sustainable agricultural outcomes. In the present study, individuals of Foeniculum vulgare, a valuable aromatic plant species with potential medicinal value, were inoculated with different plant growth promoting microorganisms: (1) Arbuscular mycorrhizal like fungi (Sebacina vermifera) (2) Phosphate solubilizing bacteria (Pseudomonas fluorescens) (3) Azotobacter (Azotobacter chroococcum). Response of individual microorganism species was evaluated with reference to the emergence, plant growth and yield of essential oil along with qualitative effects on essential oil. Comparatively, significant response of Sebacina vermifera, in the stimulation of emergence of seeds, growth of plant and yield enhancement of essential oil was observed. An enhanced synthesis of anethole (major chemical constituent) was also recorded. Moreover, the enhancement in growth of plants was dependent on the extent of colonization percentage. A periodic study of growth parameters indicates plant’s health and vitality influenced by Sebacina vermifera. The enhanced essential oil of seeds along with enhanced synthesis of anethole was in agreement with the assumption that Sebacina vermifera trigger defensive responses and hence improve phytochemical production. A mechanistic insight is also illustrated. In conclusion Sebacina vermifera possesses immense potentials in the pursuit of agro-ecological attributes of medicinal plant cultivation and crop production. It exerts excellent growth effects and enhances phytochemical production in medicinal plants.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiaqi Chen ◽  
Guangyu Zhao ◽  
Yihui Wei ◽  
Yuhong Dong ◽  
Lingyu Hou ◽  
...  

AbstractPhosphorus-solubilizing microorganisms is a microbial fertilizer with broad application potential. In this study, 7 endophytic phosphate solubilizing bacteria were screened out from Chinese fir, and were characterized for plant growth-promoting traits. Based on morphological and 16S rRNA sequence analysis, the endophytes were distributed into 5 genera of which belong to Pseudomonas, Burkholderia, Paraburkholderia, Novosphingobium, and Ochrobactrum. HRP2, SSP2 and JRP22 were selected based on their plant growth-promoting traits for evaluation of Chinese fir growth enhancement. The growth parameters of Chinese fir seedlings after inoculation were significantly greater than those of the uninoculated control group. The results showed that PSBs HRP2, SSP2 and JRP22 increased plant height (up to 1.26 times), stem diameter (up to 40.69%) and the biomass of roots, stems and leaves (up to 21.28%, 29.09% and 20.78%) compared to the control. Total N (TN), total P (TP), total K (TK), Mg and Fe contents in leaf were positively affected by PSBs while showed a significant relationship with strain and dilution ratio. The content of TN, TP, TK, available phosphorus (AP) and available potassium (AK) in the soil increased by 0.23–1.12 mg g−1, 0.14–0.26 mg g−1, 0.33–1.92 mg g−1, 5.31–20.56 mg kg−1, 15.37–54.68 mg kg−1, respectively. Treatment with both HRP2, SSP2 and JRP22 increased leaf and root biomass as well as their N, P, K uptake by affecting soil urease and acid phosphatase activities, and the content of available nutrients in soil. In conclusion, PSB could be used as biological agents instead of chemical fertilizers for agroforestry production to reduce environmental pollution and increase the yield of Chinese fir.


Sign in / Sign up

Export Citation Format

Share Document