scholarly journals Effects of grazing intensity and the use of veterinary medical products on dung beetle biodiversity in the sub-mountainous landscape of Central Italy

Author(s):  
Mattia Tonelli ◽  
José R. Verdú ◽  
Mario E. Zunino

Grazing extensification and intensification are among the main problems affecting European grasslands. We analyze the impact of grazing intensity (low and moderate) and the use of veterinary medical products (VMPs) on the dung beetle community in the province of Pesaro-Urbino (Italy). Grazing intensity is a key factor in explaining the diversity of dung beetles. In the case of the alpha diversity component, sites with a low level of grazing activity – related in a previous step to the subsequent abandonment of traditional farming – is characterized by a loss of species richness (q = 0) and a reduction in alpha diversity at the levels q = 1 and q = 2. In the case of beta diversity, sites with a different grazing intensity show remarkable differences in terms of the composition of their species assemblages. The use of VMPs is another important factor in explaining changes in dung beetle diversity. In sites with a traditional use of VMPs, a significant loss of species richness and biomass is observed, as is a notable effect on beta diversity. In addition, the absence of indicator species in sites with a historical use of VMPs corroborates the hypothesis that these substances have a ubiquitous effect on dung beetles. However, the interaction between grazing activity and VMPs when it comes to explaining changes in dung beetle diversity is less significant (or is not significant) than the main effects (each factor separately) for alpha diversity, biomass and species composition. This may be explained if we consider that both factors affect the various species differently. In other words, the reduction in dung availability affects several larger species more than it does very small species, although this does not imply that the former are more susceptible to injury caused by the ingestion of dung contaminated with VMPs. Finally, in order to prevent negative consequences for dung beetle diversity, we propose the maintenance of a moderate grazing intensity and the rational use of VMPs. It is our view that organic management can prevent excessive extensification while providing an economic stimulus to the sector. Simultaneously, it can also prevent the abuse of VMPs.

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2780 ◽  
Author(s):  
Mattia Tonelli ◽  
José R. Verdú ◽  
Mario E. Zunino

Grazing extensification and intensification are among the main problems affecting European grasslands. We analyze the impact of grazing intensity (low and moderate) and the use of veterinary medical products (VMPs) on the dung beetle community in the province of Pesaro-Urbino (Italy). Grazing intensity is a key factor in explaining the diversity of dung beetles. In the case of the alpha diversity component, sites with a low level of grazing activity—related in a previous step to the subsequent abandonment of traditional farming—is characterized by a loss of species richness (q = 0) and a reduction in alpha diversity at the levels q = 1 and q = 2. In the case of beta diversity, sites with a different grazing intensity show remarkable differences in terms of the composition of their species assemblages. The use of VMPs is another important factor in explaining changes in dung beetle diversity. In sites with a traditional use of VMPs, a significant loss of species richness and biomass is observed, as is a notable effect on beta diversity. In addition, the absence of indicator species in sites with a historical use of VMPs corroborates the hypothesis that these substances have a ubiquitous effect on dung beetles. However, the interaction between grazing activity and VMPs when it comes to explaining changes in dung beetle diversity is less significant (or is not significant) than the main effects (each factor separately) for alpha diversity, biomass and species composition. This may be explained if we consider that both factors affect the various species differently. In other words, the reduction in dung availability affects several larger species more than it does very small species, although this does not imply that the former are more susceptible to injury caused by the ingestion of dung contaminated with VMPs. Finally, in order to prevent negative consequences for dung beetle diversity, we propose the maintenance of a moderate grazing intensity and the rational use of VMPs. It is our view that organic management can prevent excessive extensification while providing an economic stimulus to the sector. Simultaneously, it can also prevent the abuse of VMPs.


2016 ◽  
Author(s):  
Mattia Tonelli ◽  
José R. Verdú ◽  
Mario E. Zunino

Grazing extensification and intensification are among the main problems affecting European grasslands. We analyze the impact of grazing intensity (low and moderate) and the use of veterinary medical products (VMPs) on the dung beetle community in the province of Pesaro-Urbino (Italy). Grazing intensity is a key factor in explaining the diversity of dung beetles. In the case of the alpha diversity component, sites with a low level of grazing activity – related in a previous step to the subsequent abandonment of traditional farming – is characterized by a loss of species richness (q = 0) and a reduction in alpha diversity at the levels q = 1 and q = 2. In the case of beta diversity, sites with a different grazing intensity show remarkable differences in terms of the composition of their species assemblages. The use of VMPs is another important factor in explaining changes in dung beetle diversity. In sites with a traditional use of VMPs, a significant loss of species richness and biomass is observed, as is a notable effect on beta diversity. In addition, the absence of indicator species in sites with a historical use of VMPs corroborates the hypothesis that these substances have a ubiquitous effect on dung beetles. However, the interaction between grazing activity and VMPs when it comes to explaining changes in dung beetle diversity is less significant (or is not significant) than the main effects (each factor separately) for alpha diversity, biomass and species composition. This may be explained if we consider that both factors affect the various species differently. In other words, the reduction in dung availability affects several larger species more than it does very small species, although this does not imply that the former are more susceptible to injury caused by the ingestion of dung contaminated with VMPs. Finally, in order to prevent negative consequences for dung beetle diversity, we propose the maintenance of a moderate grazing intensity and the rational use of VMPs. It is our view that organic management can prevent excessive extensification while providing an economic stimulus to the sector. Simultaneously, it can also prevent the abuse of VMPs.


2021 ◽  
pp. archdischild-2021-322590
Author(s):  
Laura Diamond ◽  
Rachel Wine ◽  
Shaun K Morris

BackgroundThe composition of the infant gastrointestinal (GI) microbiome has been linked to adverse long-term health outcomes and neonatal sepsis. Several factors are known to impact the composition of the microbiome, including mode of delivery, gestational age, feeding method and exposure to antibiotics. The impact of intrapartum antibiotics (IPAs) on the infant microbiome requires further research.ObjectiveWe aimed to evaluate the impact of IPAs on the infant GI microbiome.MethodsWe searched Ovid MEDLINE and Embase Classic+Embase for articles in English reporting on the microbiome of infants exposed to IPAs from the date of inception to 3 January 2021. Primary outcomes included abundance and colonisation of Bifidobacterium and Lactobacillus, as well as alpha and beta diversity.Results30 papers were included in this review. In the first year of life, following exposure to IPAs, 30% (6/20) of infant cohorts displayed significantly reduced Bifidobacterium, 89% (17/19) did not display any significant differences in Lactobacillus colonisation, 21% (7/34) displayed significantly reduced alpha diversity and 35% (12/34) displayed alterations in beta diversity. Results were further stratified by delivery, gestational age (preterm or full term) and feeding method.ConclusionsIPAs impact the composition of the infant GI microbiome, resulting in possible reductions Bifidobacterium and alpha diversity, and possible alterations in beta diversity. Our findings may have implications for maternal and neonatal health, including interventions to prevent reductions in health-promoting bacteria (eg, probiotics) and IPA class selection.


2009 ◽  
Vol 26 (1) ◽  
pp. 53-65 ◽  
Author(s):  
Shahabuddin ◽  
Purnama Hidayat ◽  
Sjafrida Manuwoto ◽  
Woro A. Noerdjito ◽  
Teja Tscharntke ◽  
...  

Abstract:Dung beetles are a functionally important component of most terrestrial ecosystems, but communities change with habitat disturbance and deforestation. In this study, we tested if dung beetle ensembles on dung of introduced cattle and of the endemic anoa, a small buffalo, are affected differentially by habitat disturbance. Therefore, we exposed 10 pitfall traps, five baited with anoa and five baited with cattle dung, per site in six habitat types ranging from natural and selectively logged rain forest to three types of agroforestry system (characterized by different management intensity) and open areas (n = 4 replicate sites per habitat type) at the margin of Lore Lindu National Park, Central Sulawesi, Indonesia. We found 28 species, 43% of which were endemic to Sulawesi. Species richness, abundance and biomass declined from natural forest towards open area. Large-bodied species appeared to be more sensitive to habitat disturbance and the ratio of large to small-sized dung beetles declined with land-use intensity. Although selectively logged forest and cocoa agroforestry systems had lower species richness compared with natural forest, they appeared to maintain a high portion of species originally inhabiting forest sites. The similarity of dung beetle ensembles recorded at forest and agroforestry sites reflects the high similarity of some habitat variables (e.g. vegetation structure and microclimate) between both habitat types compared with open areas. Species richness and abundances as well as species composition, which was characterized by decreases in mean body size, changed with land-use intensity, indicating that dung type is less important than habitat type for determining ensemble structure of these Indonesian dung beetles.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 1162-1162
Author(s):  
Abigail Johnson ◽  
Mo Houtti ◽  
Anna Saboe ◽  
Katie Koecher ◽  
Ravi Menon ◽  
...  

Abstract Objectives Health outcomes in previous fiber intervention studies have been variable, potentially due to differences in gut microbiome composition. This study aimed to determine if the effect of fiber intervention on the microbiome differs by initial microbiome or the quantity of fiber provided. Methods This study was designed as a randomized, un-blinded, cross-over trial of fiber cereal dosage. The cross-over design tested the effect of two 2-week long interventions with a High (28g) and Low (14g) level of daily supplemental fiber from whole wheat and bran cereal. Analysis was also completed on the overall study as a single arm, non-randomized, intervention of fiber cereal. The study enrolled 31 healthy adults. The microbiome was assessed at baseline and after intervention for changes in diversity, composition, and stability. Results Across all individuals, fiber intervention increased microbiome alpha-diversity (paired t-test, P = 0.047), but the microbiome was otherwise resistant to the effects of the intervention. Increasing fiber dose (High v. Low) was not associated with consistent changes in beta-diversity (linear mixed models). Approximately 20% of subjects were identified as responders based on beta diversity effect size. At baseline, responders had higher Prevotella copri and lower Bacteroides abundance than non-responders (Wilcoxon rank sum, qval < 0.05). In responders, fiber intake caused increased abundance of Bacteroides and Alistipes and reduced Prevotella (paired Wilcoxon, q < 0.2). In all subjects, fiber intervention decreased microbiome stability (paired Wilcoxon signed rank test, P = 0.006). In responders, there was a significant effect of the fiber level on stability, with higher fiber further lowering stability (linear mixed model, P = 0.05). Conclusions Our data suggest a responder/non-responder microbiome signature for this whole wheat and bran fiber cereal. We find that many effects were not additive by dosage level. Overall, microbiome diversity was increased and stability was decreased during the fiber cereal intervention and in responders this was dose dependent; the clinical implications of the impact of changes in stability remain unknown, and it is possible that the microbiome would stabilize in a longer intervention study. ClinicalTrials.gov identifier: NCT03623308. Funding Sources General Mills, Inc.


2021 ◽  
Author(s):  
Diana J. Zajac ◽  
Stefan J. Green ◽  
Lance A. Johnson ◽  
Steven Estus

Abstract Background: Apolipoprotein E (APOE) alleles impact pathogenesis and risk for multiple human diseases, making them primary targets for disease treatment and prevention. Previously, we and others reported an association between APOE alleles and the gut microbiome. Here, we tested whether these results are confirmed by using mice that were maintained under ideal conditions for microbiome analyses. Methods: To model human APOE alleles, this study used APOE targeted replacement (TR) mice on a C57Bl/6 background. To minimize genetic drift, APOE3 mice were crossed to APOE2 or APOE4 mice prior to the study, and the resulting heterozygous progeny crossed further to generate the study mice. To maximize environmental homogeneity, mice with mixed genotypes were housed together and used bedding from the cages was mixed and added back as a portion of new bedding. Fecal samples were obtained from mice at three-, five- and seven-months of age, and microbiota analyzed by 16S ribosomal RNA gene amplicon sequencing. APOE2/E2 and APOE2/E3 mice were categorized as APOE2, APOE3/E4 and APOE4/E4 mice were categorized as APOE4, and APOE3/E3 mice were categorized as APOE3. Linear discriminant analysis of Effect Size (LefSe) identified taxa associated with APOE status, depicted as cladograms to show phylogenetic relatedness. The influence of APOE status was tested onalpha-diversity (Shannon H index) and beta-diversity (principal coordinate analyses and PERMANOVA). Individual taxa associated with APOE status were identified by classical univariate analysis. Whether findings in the APOE mice were replicated in humans was evaluated by using published microbiome genome wide association data. Results: Cladograms revealed robust differences with APOE in male mice and limited differences in female mice. The richness and evenness (alpha-diversity) and microbial community composition (beta-diversity) of the fecal microbiome was robustly associated with APOE status in male but not female mice. Classical univariate analysis revealed individual taxa that were significantly increased or decreased with APOE, illustrating a stepwise APOE2-APOE3-APOE4 pattern of association. The Clostridia class, Clostridiales order, Ruminococacceae family and related genera increased with APOE2 status. The Erysipelotrichia phylogenetic branch increased with APOE4 status, a finding that extended to humans.Conclusions: In this study wherein mice were maintained in an ideal fashion for microbiome studies, gut microbiome profiles were strongly and significantly associated with APOE status in male APOE-TR mice. Erysipelotrichia in particular appears to increase with APOE4 in both mice and humans. Further evaluation of these findings in humans, as well as studies evaluating the impact of the APOE-associated microbiota on disease-relevant phenotypes, will be necessary to determine if alterations in the gut microbiome represents a novel mechanism whereby APOE alleles impact disease.


2010 ◽  
Vol 26 (5) ◽  
pp. 481-496 ◽  
Author(s):  
Heidi Viljanen ◽  
Helena Wirta ◽  
Olivier Montreuil ◽  
Pierre Rahagalala ◽  
Steig Johnson ◽  
...  

Abstract:The wet tropical forests in Madagascar have endemic dung beetles that have radiated for tens of millions of years using a limited range of resources produced by the species-poor mammalian fauna. Beetles were trapped in two wet-forest localities over 4 years (6407 trap nights, 18,869 individuals). More limited data for six other local communities were used to check the generality of the results. Local communities are relatively species poor (around 30 species) in comparison with wet-forest-inhabiting dung beetle communities elsewhere in the tropics (typically 50 or more species). The species belong to only two tribes, Canthonini and Helictopleurina (Oniticellini), which have evolved, exceptionally for dung beetle tribes, completely nocturnal versus diurnal diel activities, respectively. Patterns in the elevational occurrence, body size and resource use suggest that interspecific competition restricts the numbers of locally coexisting species exploiting the limited range of resources that are available. On the other hand, regional turnover in the species composition is exceptionally high due to a large number of species with small geographical ranges, yielding a very large total fauna of dung beetles in Madagascar (>250 species). Apart from exceptionally low local (alpha) diversity and high beta diversity, the Malagasy dung beetle communities are ecologically distinctive from comparable communities in other tropical regions in having high numerical dominance of the most abundant species, small average body size and low degree of resource specialization.


Sign in / Sign up

Export Citation Format

Share Document