Impact of intrapartum antibiotics on the infant gastrointestinal microbiome: a narrative review

2021 ◽  
pp. archdischild-2021-322590
Author(s):  
Laura Diamond ◽  
Rachel Wine ◽  
Shaun K Morris

BackgroundThe composition of the infant gastrointestinal (GI) microbiome has been linked to adverse long-term health outcomes and neonatal sepsis. Several factors are known to impact the composition of the microbiome, including mode of delivery, gestational age, feeding method and exposure to antibiotics. The impact of intrapartum antibiotics (IPAs) on the infant microbiome requires further research.ObjectiveWe aimed to evaluate the impact of IPAs on the infant GI microbiome.MethodsWe searched Ovid MEDLINE and Embase Classic+Embase for articles in English reporting on the microbiome of infants exposed to IPAs from the date of inception to 3 January 2021. Primary outcomes included abundance and colonisation of Bifidobacterium and Lactobacillus, as well as alpha and beta diversity.Results30 papers were included in this review. In the first year of life, following exposure to IPAs, 30% (6/20) of infant cohorts displayed significantly reduced Bifidobacterium, 89% (17/19) did not display any significant differences in Lactobacillus colonisation, 21% (7/34) displayed significantly reduced alpha diversity and 35% (12/34) displayed alterations in beta diversity. Results were further stratified by delivery, gestational age (preterm or full term) and feeding method.ConclusionsIPAs impact the composition of the infant GI microbiome, resulting in possible reductions Bifidobacterium and alpha diversity, and possible alterations in beta diversity. Our findings may have implications for maternal and neonatal health, including interventions to prevent reductions in health-promoting bacteria (eg, probiotics) and IPA class selection.

2020 ◽  
Author(s):  
Julius Sebald ◽  
Timothy Thrippleton ◽  
Werner Rammer ◽  
Harald Bugmann ◽  
Rupert Seidl

<div> <div> <div> <p>Forests are strongly affected by climatic changes, but impacts vary between tree species and prevailing site conditions. A number of studies suggest that increasing tree species diversity is a potent management strategy to decrease climate change impacts in general, and increase the resilience of forest ecosystems to changing disturbance regimes. However, most studies to date have focused on stand-level diversity in tree species (alpha diversity), which is often difficult to implement in operational forest management. Inter-species competition requires frequent management interventions to maintain species mixture and complicates the production of high-quality stemwood. An alternative option to increasing alpha diversity is to increase tree species diversity between forest stands (beta diversity). Here we quantify the effects of alpha and beta diversity on the impact of forest disturbances under climate change. We conducted a simulation experiment applying two forest landscape models (i.e. iLand and LandClim) in two landscapes with strongly contrasting environmental conditions in Central Europe. Simulations investigate different levels of tree species diversity (no diversity, low diversity and high diversity) in different spatial arrangements (alpha diversity, beta diversity). Subsequently a standard forest management regime and a series of prescribed disturbances are applied over 200 years. By analyzing biomass values relative to a no-disturbance run, variation in biomass over time and the number of trees > 30 cm dbh per hectare, we isolate the effect of tree species diversity on the resistance of forests to disturbances.</p> </div> </div> </div>


2021 ◽  
Author(s):  
Marcel Suleiman ◽  
Frank Pennekamp ◽  
Yves Choffat ◽  
Owen L. Petchey

Understanding how microbial communities as key drivers of global biogeochemical cycles respond to environmental change remains a critical challenge in microbial ecology. In this study, we used phototrophic oxic-anoxic micro-ecosystems to understand how aerobic and anaerobic lake analog communities responded towards stressful light removal. Continuous oxygen measurements and four snapshots of full-length 16S rRNA sequencing were performed to detect responses of oxygen concentration, and of alpha and beta diversity. In the top layer, oxygen concentration decreased significantly under light limitation, but showed almost complete resilience after normal light conditions were restored, while the bottom layer remained anoxic throughout the experiment. Microbial communities, however, differed in their response behavior: alpha-diversity of the aerobic communities showed a delayed response after light conditions were restored, and their composition was not resilient during the duration of the experiment. In contrast, alpha-diversity of the anaerobic bottom water communities increased due to the stressor and was resilient. Beta-diversity changed significantly during light removal, showed resilience for the aerobic communities, but stayed significantly affected for the anaerobic communities. We conclude that whole-ecosystem responses and several time-points are needed to fully understand the impact of stressors on microbial ecosystems, since resistance/resilience can differ among and within abiotic and biotic ecosystem components.


Botany ◽  
2018 ◽  
Vol 96 (8) ◽  
pp. 499-509
Author(s):  
Milène Courchesne ◽  
Stéphanie Pellerin ◽  
Marianne Bachand ◽  
Steeve D. Côté ◽  
Monique Poulin

Peatlands could become important foraging habitats, and their plant communities threatened, in areas with an overabundance of large herbivores. Peatland response to herbivore exclusion may vary widely according to abiotic conditions and associated species because of a strong minerotrophic gradient. We assessed the impact of white-tailed deer (Odocoileus virginianus Zimm.) on peatland vegetation using an exclosure experiment. A total of 53 pairs of exclosures and unprotected plots were set up in bogs (13 pairs), sedge fens (20), shrub fens (7), and laggs (13), and surveyed prior to exclosure construction as well as three, five, and eight years after. Vascular plant composition of exclosures diverged from that of unprotected plots through time only in shrub fens and laggs. Bryophytes remained constant in all habitats. On average, shrub cover was 30% higher in exclosures in all habitats after five years, whereas herb cover increased only in laggs, by 43%, after eight years. Reclassification of sites by pH showed deer exclusion promoted alpha diversity in low- and high-moderate rich fens (pH 5.3–6.8) and beta diversity in the latter as well as in rich fens (pH 6.3–7.5). Overall, our results suggest that conservation efforts in areas with overabundant large herbivores should target richer peatland habitats since they showed a higher resilience and fostered alpha and beta diversity.


Author(s):  
Maciej Chichlowski ◽  
Nicholas Bokulich ◽  
Cheryl L Harris ◽  
Jennifer L Wampler ◽  
Fei Li ◽  
...  

Abstract Background Milk fat globule membrane (MFGM) and lactoferrin (LF) are human milk bioactive components demonstrated to support gastrointestinal (GI) and immune development. Significantly fewer diarrhea and respiratory-associated adverse events through 18 months of age were previously reported in healthy term infants fed a cow's milk-based infant formula with added source of bovine MFGM and bovine LF through 12 months of age. Objectives To compare microbiota and metabolite profiles in a subset of study participants. Methods Stool samples were collected at Baseline (10–14 days of age) and Day 120 (MFGM + LF: 26, Control: 33). Bacterial community profiling was performed via16S rRNA gene sequencing (Illumina MiSeq) and alpha and beta diversity were analyzed (QIIME 2). Differentially abundant taxa were determined using Linear discriminant analysis effect size (LefSE) and visualized (Metacoder). Untargeted stool metabolites were analyzed (HPLC/mass spectroscopy) and expressed as the fold-change between group means (Control: MFGM + LF ratio). Results Alpha diversity increased significantly in both groups from baseline to 4 months. Subtle group differences in beta diversity were demonstrated at 4 months (Jaccard distance; R2 = 0.01, P = 0.042). Specifically, Bacteroides uniformis and Bacteroides plebeius were more abundant in the MFGM + LF group at 4 months. Metabolite profile differences for MFGM + LF vs Control included: lower fecal medium chain fatty acids, deoxycarnitine, and glycochenodeoxycholate, and some higher fecal carbohydrates and steroids (P < 0.05). After applying multiple test correction, the differences in stool metabolomics were not significant. Conclusions Addition of bovine MFGM and LF in infant formula was associated with subtle differences in stool microbiome and metabolome by four months of age, including increased prevalence of Bacteroides species. Stool metabolite profiles may be consistent with altered microbial metabolism. Trial registration:  https://clinicaltrials.gov/ct2/show/NCT02274883).


Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 463
Author(s):  
Mariusz Sikora ◽  
Albert Stec ◽  
Magdalena Chrabaszcz ◽  
Aleksandra Knot ◽  
Anna Waskiel-Burnat ◽  
...  

(1) Background: A growing body of evidence highlights that intestinal dysbiosis is associated with the development of psoriasis. The gut–skin axis is the novel concept of the interaction between skin diseases and microbiome through inflammatory mediators, metabolites and the intestinal barrier. The objective of this study was to synthesize current data on the gut microbial composition in psoriasis. (2) Methods: We conducted a systematic review of studies investigating intestinal microbiome in psoriasis, using the PRISMA checklist. We searched MEDLINE, EMBASE, and Web of Science databases for relevant published articles (2000–2020). (3) Results: All of the 10 retrieved studies reported alterations in the gut microbiome in patients with psoriasis. Eight studies assessed alpha- and beta-diversity. Four of them reported a lack of change in alpha-diversity, but all confirmed significant changes in beta-diversity. At the phylum-level, at least two or more studies reported a lower relative abundance of Bacteroidetes, and higher Firmicutes in psoriasis patients versus healthy controls. (4) Conclusions: There is a significant association between alterations in gut microbial composition and psoriasis; however, there is high heterogeneity between studies. More unified methodological standards in large-scale studies are needed to understand microbiota’s contribution to psoriasis pathogenesis and its modulation as a potential therapeutic strategy.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1907.2-1907
Author(s):  
Y. Tsuji ◽  
M. Tamai ◽  
S. Morimoto ◽  
D. Sasaki ◽  
M. Nagayoshi ◽  
...  

Background:Anti-citrullinated protein antibody (ACPA) production is observed in several organs even prior to the onset of rheumatoid arthritis (RA), and oral mucosa is considered to be one of the important tissues. The presence of HLA-DRB1*SE closely associates with ACPA production. Saliva is considered to reflect the oral microbiota including periodontal disease. Alteration of oral microbiota of RA becomes to be normalized by DMARDs treatment, however, the interaction of HLA-DRB1*SE, ACPA and oral microbiota of RA patients remains to be elucidated.Objectives:The Nagasaki Island Study, which had started in 2014 collaborating with Goto City, is intended for research of the preclinical stage of RA, including ACPA/HLA genotype screening and ultrasound and magnetic resonance imaging examinations in high-risk subjects. Using the samples accumulated in this cohort, we have tried to investigate the difference of oral microbiota among RA patients and healthy subjects regarding to ACPA and HLA-DRB1*SE.Methods:Blood and salivary samples were obtained from 1422 subjects out of 4276 who have participated in the Nagasaki Island Study from 2016 to 2018. ACPA positivity was 1.7 % in total. Some of RA patients resided in Goto City participated in the Nagasaki Island Study. At this point, we selected 291 subjects, who were ACPA positive non-RA healthy subjects (n=22) and patients with RA (n=33, 11 subjects were ACPA positive and 22 ACPA negative respectively) as the case, age and gender matched ACPA negative non-RA healthy subjects (n=236) as the control. ACPA was measured by an enzyme-linked immunosorbent assay, and HLA genotyping was quantified by next-generation sequencing (Ref.1). The operational taxonomic unit (OUT) analysis using 16S rRNA gene sequencing were performed. The richness of microbial diversity within-subject (alpha diversity) was scaled via Shannon entropy. The dissimilarity between microbial community composition was calculated using Bray-Curtis distance as a scale, and differences between groups (beta diversity) were tested by permutational multivariate analysis of variance (PERMANOVA). In addition, UniFrac distance calculated in consideration of the distance on the phylogenetic tree were performed.Results:Median age 70 y.o., % Female 58.8 %. Among RA and non-RA subjects, not alpha diversity but beta diversity was statistically significance (p=0.022, small in RA). In RA subjects, both alpha and beta diversity is small (p<0.0001), especially significant in ACPA positive RA (Figure 1). Amongt RA subjects, presence of HLA-DRB1*SE did not show the difference but the tendency of being small of alpha diversity (p=0.29).Conclusion:Our study has suggested for the first time the association of oral microbiota alteration with the presence of ACPA and HLA-DRB1*SE. Oral dysbiosis may reflect the immunological status of patients with RA.References:[1]Kawaguchi S, et al. Methods Mol Biol 2018;1802: 22Disclosure of Interests:None declared


2018 ◽  
Vol 219 (10) ◽  
pp. 1642-1651 ◽  
Author(s):  
Gino Agbota ◽  
Manfred Accrombessi ◽  
Gilles Cottrell ◽  
Yves Martin-Prével ◽  
Jacqueline Milet ◽  
...  

2017 ◽  
Vol 49 (5) ◽  
pp. 1602019 ◽  
Author(s):  
Meghan B. Azad ◽  
Lorena Vehling ◽  
Zihang Lu ◽  
David Dai ◽  
Padmaja Subbarao ◽  
...  

The impact of breastfeeding on respiratory health is uncertain, particularly when the mother has asthma. We examined the association of breastfeeding and wheezing in the first year of life.We studied 2773 infants from the Canadian Healthy Infant Longitudinal Development (CHILD) birth cohort. Caregivers reported on infant feeding and wheezing episodes at 3, 6 and 12 months. Breastfeeding was classified as exclusive, partial (supplemented with formula or complementary foods) or none.Overall, 21% of mothers had asthma, 46% breastfed for at least 12 months and 21% of infants experienced wheezing. Among mothers with asthma, breastfeeding was inversely associated with infant wheezing, independent of maternal smoking, education and other risk factors (adjusted rate ratio (aRR) 0.52; 95% CI 0.35–0.77 for ≥12 versus <6 months breastfeeding). Compared with no breastfeeding at 6 months, wheezing was reduced by 62% with exclusive breastfeeding (aRR 0.38; 95% CI 0.20–0.71) and by 37% with partial breastfeeding supplemented with complementary foods (aRR 0.63; 95% CI 0.43–0.93); however, breastfeeding was not significantly protective when supplemented with formula (aRR 0.89; 95% CI 0.61–1.30). Associations were not significant in the absence of maternal asthma (p-value for interaction <0.01).Breastfeeding appears to confer protection against wheezing in a dose-dependent manner among infants born to mothers with asthma.


2018 ◽  
Vol 30 (5) ◽  
pp. 1995-2008 ◽  
Author(s):  
Andrew Dismukes ◽  
Elizabeth Shirtcliff ◽  
Christopher W. Jones ◽  
Charles Zeanah ◽  
Katherine Theall ◽  
...  

AbstractAcute reactivity of the stress hormone cortisol is reflective of early adversity and stress exposure, with some studies finding that the impact of adversity on the stress response differs by race. The objectives of the current study were to characterize cortisol reactivity to two dyadically based stress paradigms across the first year of life, to examine cortisol reactivity within Black and White infants, and to assess the impact of correlates of racial inequity including socioeconomic status, experiences of discrimination, and urban life stressors, as well as the buffering by racial socialization on cortisol patterns. Salivary cortisol reactivity was assessed at 4 months of age during the Still Face paradigm (N = 207) and at 12 months of age across the Strange Situation procedure (N = 129). Infants demonstrated the steepest recovery after the Still Face paradigm and steepest reactivity to the Strange Situation procedure. Race differences in cortisol were not present at 4 months but emerged at 12 months of age, with Black infants having higher cortisol. Experiences of discrimination contributed to cortisol differences within Black infants, suggesting that racial discrimination is already “under the skin” by 1 year of age. These findings suggest that race-related differences in hypothalamic–pituitary–adrenal reactivity are present in infancy, and that the first year of life is a crucial time period during which interventions and prevention efforts for maternal–infant dyads are most likely able to shape hypothalamic–pituitary–adrenal reactivity thereby mitigating health disparities early across the life course.


Sign in / Sign up

Export Citation Format

Share Document