scholarly journals DigestiFlow - reproducible demultiplexing for the single cell era

Author(s):  
Manuel Holtgrewe ◽  
Mikko Nieminen ◽  
Clemens Messerschmidt ◽  
Dieter Beule

Summary. Managing raw sequencing data and conversion into sequences (demultiplexing) remains a challenging topic for groups running sequencing devices. They face many challenges in such efforts and solutions range from manual management of spreadsheets to very complex and customized LIMS systems handling much more than just sequencing raw data. In this manuscript, we describe the software package DigestiFlow that focuses on the management of Illumina flow cell sample sheets and raw data. Namely, it allows for automated extraction of flow cell raw data information, management of sample sheets, and the automated (and thus reproducible) demultiplexing of Illumina base calls data. Availability and Implementation. The software is available under the MIT license at https://github.com/bihealth/digestiflow-server. The client and demux software components are available via Bioconda.

2019 ◽  
Author(s):  
Manuel Holtgrewe ◽  
Mikko Nieminen ◽  
Clemens Messerschmidt ◽  
Dieter Beule

Management raw sequencing data and its preprocessing (conversion into sequences and demultiplexing) remains a challenging topic for groups running sequencing devices. They face many challenges in such efforts and solutions ranging from manual management of spreadsheets to very complex and customized LIMS systems handling much more than just sequencing raw data. In this manuscript, we describe the software package DigestiFlow that focuses on the management of Illumina flow cell sample sheets and raw data. It allows for automated extraction of information from flow cell data and management of sample sheets. Furthermore, it allows for the automated and reproducible conversion of Illumina base calls to sequences and the demultiplexing thereof using bcl2fastq and Picard Tools, followed by quality control report generation.


2019 ◽  
Author(s):  
Manuel Holtgrewe ◽  
Clemens Messerschmidt ◽  
Mikko Nieminen ◽  
Dieter Beule

Abstract Summary Management raw sequencing data and its preprocessing (conversion into sequences and demultiplexing) remains a challenging topic for groups running sequencing devices. They face many challenges in such efforts and solutions ranging from manual management of spreadsheets to very complex and customized LIMS systems handling much more than just sequencing raw data. In this manuscript, we describe the software package DigestiFlow that focuses on the management of Illumina flow cell sample sheets and raw data. It allows for automated extraction of information from flow cell data and management of sample sheets. Furthermore, it allows for the automated and reproducible conversion of Illumina base calls to sequences and the demultiplexing thereof using bcl2fastq and Picard Tools, followed by quality control report generation. Availability and Implementation The software is available under the MIT license at https://github.com/bihealth/digestiflow-server. The client software components are available via Bioconda. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Author(s):  
Manuel Holtgrewe ◽  
Mikko Nieminen ◽  
Clemens Messerschmidt ◽  
Dieter Beule

Management raw sequencing data and its preprocessing (conversion into sequences and demultiplexing) remains a challenging topic for groups running sequencing devices. They face many challenges in such efforts and solutions ranging from manual management of spreadsheets to very complex and customized LIMS systems handling much more than just sequencing raw data. In this manuscript, we describe the software package DigestiFlow that focuses on the management of Illumina flow cell sample sheets and raw data. It allows for automated extraction of information from flow cell data and management of sample sheets. Furthermore, it allows for the automated and reproducible conversion of Illumina base calls to sequences and the demultiplexing thereof using bcl2fastq and Picard Tools, followed by quality control report generation.


2021 ◽  
Author(s):  
Micha Sam Brickman Raredon ◽  
Junchen Yang ◽  
James Garritano ◽  
Meng Wang ◽  
Dan Kushnir ◽  
...  

AbstractSingle-cell RNA-sequencing data can revolutionize our understanding of the patterns of cell-cell and ligand-receptor connectivity that influence the function of tissues and organs. However, the quantification and visualization of these patterns are major computational and epistemological challenges. Here, we present Connectome, a software package for R which facilitates rapid calculation, and interactive exploration, of cell-cell signaling network topologies contained in single-cell RNA-sequencing data. Connectome can be used with any reference set of known ligand-receptor mechanisms. It has built-in functionality to facilitate differential and comparative connectomics, in which complete mechanistic networks are quantitatively compared between systems. Connectome includes computational and graphical tools designed to analyze and explore cell-cell connectivity patterns across disparate single-cell datasets. We present approaches to quantify these topologies and discuss some of the biologic theory leading to their design.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Leah L. Weber ◽  
Mohammed El-Kebir

Abstract Background Cancer arises from an evolutionary process where somatic mutations give rise to clonal expansions. Reconstructing this evolutionary process is useful for treatment decision-making as well as understanding evolutionary patterns across patients and cancer types. In particular, classifying a tumor’s evolutionary process as either linear or branched and understanding what cancer types and which patients have each of these trajectories could provide useful insights for both clinicians and researchers. While comprehensive cancer phylogeny inference from single-cell DNA sequencing data is challenging due to limitations with current sequencing technology and the complexity of the resulting problem, current data might provide sufficient signal to accurately classify a tumor’s evolutionary history as either linear or branched. Results We introduce the Linear Perfect Phylogeny Flipping (LPPF) problem as a means of testing two alternative hypotheses for the pattern of evolution, which we prove to be NP-hard. We develop Phyolin, which uses constraint programming to solve the LPPF problem. Through both in silico experiments and real data application, we demonstrate the performance of our method, outperforming a competing machine learning approach. Conclusion Phyolin is an accurate, easy to use and fast method for classifying an evolutionary trajectory as linear or branched given a tumor’s single-cell DNA sequencing data.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii110-ii110
Author(s):  
Christina Jackson ◽  
Christopher Cherry ◽  
Sadhana Bom ◽  
Hao Zhang ◽  
John Choi ◽  
...  

Abstract BACKGROUND Glioma associated myeloid cells (GAMs) can be induced to adopt an immunosuppressive phenotype that can lead to inhibition of anti-tumor responses in glioblastoma (GBM). Understanding the composition and phenotypes of GAMs is essential to modulating the myeloid compartment as a therapeutic adjunct to improve anti-tumor immune response. METHODS We performed single-cell RNA-sequencing (sc-RNAseq) of 435,400 myeloid and tumor cells to identify transcriptomic and phenotypic differences in GAMs across glioma grades. We further correlated the heterogeneity of the GAM landscape with tumor cell transcriptomics to investigate interactions between GAMs and tumor cells. RESULTS sc-RNAseq revealed a diverse landscape of myeloid-lineage cells in gliomas with an increase in preponderance of bone marrow derived myeloid cells (BMDMs) with increasing tumor grade. We identified two populations of BMDMs unique to GBMs; Mac-1and Mac-2. Mac-1 demonstrates upregulation of immature myeloid gene signature and altered metabolic pathways. Mac-2 is characterized by expression of scavenger receptor MARCO. Pseudotime and RNA velocity analysis revealed the ability of Mac-1 to transition and differentiate to Mac-2 and other GAM subtypes. We further found that the presence of these two populations of BMDMs are associated with the presence of tumor cells with stem cell and mesenchymal features. Bulk RNA-sequencing data demonstrates that gene signatures of these populations are associated with worse survival in GBM. CONCLUSION We used sc-RNAseq to identify a novel population of immature BMDMs that is associated with higher glioma grades. This population exhibited altered metabolic pathways and stem-like potentials to differentiate into other GAM populations including GAMs with upregulation of immunosuppressive pathways. Our results elucidate unique interactions between BMDMs and GBM tumor cells that potentially drives GBM progression and the more aggressive mesenchymal subtype. Our discovery of these novel BMDMs have implications in new therapeutic targets in improving the efficacy of immune-based therapies in GBM.


2021 ◽  
Vol 12 (2) ◽  
pp. 317-334
Author(s):  
Omar Alaqeeli ◽  
Li Xing ◽  
Xuekui Zhang

Classification tree is a widely used machine learning method. It has multiple implementations as R packages; rpart, ctree, evtree, tree and C5.0. The details of these implementations are not the same, and hence their performances differ from one application to another. We are interested in their performance in the classification of cells using the single-cell RNA-Sequencing data. In this paper, we conducted a benchmark study using 22 Single-Cell RNA-sequencing data sets. Using cross-validation, we compare packages’ prediction performances based on their Precision, Recall, F1-score, Area Under the Curve (AUC). We also compared the Complexity and Run-time of these R packages. Our study shows that rpart and evtree have the best Precision; evtree is the best in Recall, F1-score and AUC; C5.0 prefers more complex trees; tree is consistently much faster than others, although its complexity is often higher than others.


2021 ◽  
Vol 7 (10) ◽  
pp. eabc5464
Author(s):  
Kiya W. Govek ◽  
Emma C. Troisi ◽  
Zhen Miao ◽  
Rachael G. Aubin ◽  
Steven Woodhouse ◽  
...  

Highly multiplexed immunohistochemistry (mIHC) enables the staining and quantification of dozens of antigens in a tissue section with single-cell resolution. However, annotating cell populations that differ little in the profiled antigens or for which the antibody panel does not include specific markers is challenging. To overcome this obstacle, we have developed an approach for enriching mIHC images with single-cell RNA sequencing data, building upon recent experimental procedures for augmenting single-cell transcriptomes with concurrent antigen measurements. Spatially-resolved Transcriptomics via Epitope Anchoring (STvEA) performs transcriptome-guided annotation of highly multiplexed cytometry datasets. It increases the level of detail in histological analyses by enabling the systematic annotation of nuanced cell populations, spatial patterns of transcription, and interactions between cell types. We demonstrate the utility of STvEA by uncovering the architecture of poorly characterized cell types in the murine spleen using published cytometry and mIHC data of this organ.


Sign in / Sign up

Export Citation Format

Share Document