scholarly journals Almost faithful: SNP markers reveal low levels of extra-pair paternity in the Eurasian beavers

Author(s):  
Priyank Sharad Nimje ◽  
Helga Veronica Tinnesand ◽  
Christina Buesching ◽  
Mona Sæbø ◽  
Helen Senn ◽  
...  

Mating systems largely affect individual reproductive strategies which further drives evolution. Monogamy, where males and females form exclusive pairs for more than one breeding season, is particularly intriguing in this context, as there are real and potential costs of genetic monogamy to both sexes. However, molecular studies in a variety of species have revealed that social monogamy does not necessarily imply genetic monogamy due to occurrence of extra-pair copulations resulting in extra-pair offspring. Although common in birds, <10% of mammals are monogamous. Here we use single nucleotide polymorphism (SNP) to investigate the genetic mating system of the Eurasian beaver (Castor fiber), a species traditionally considered to be not only socially but also genetically monogamous. We found evidence for low frequency of extra-pair paternity (EPP) and multiple paternity within litter. Only 5.4% young were produced by EPP and only 7% of litter contain at least one extra-pair young. Moreover, we found indications that only pairings of old individuals engaged in EPP. None of these pairs produced more than one litter as a result of EPP and none of the EPP events resulted in mate change. Our findings suggest that EPP in beavers might be the consequence of a lapse in mate guarding ability of old males.

2019 ◽  
Author(s):  
Priyank Sharad Nimje ◽  
Helga Veronica Tinnesand ◽  
Christina Buesching ◽  
Mona Sæbø ◽  
Helen Senn ◽  
...  

Mating systems largely affect individual reproductive strategies which further drives evolution. Monogamy, where males and females form exclusive pairs for more than one breeding season, is particularly intriguing in this context, as there are real and potential costs of genetic monogamy to both sexes. However, molecular studies in a variety of species have revealed that social monogamy does not necessarily imply genetic monogamy due to occurrence of extra-pair copulations resulting in extra-pair offspring. Although common in birds, <10% of mammals are monogamous. Here we use single nucleotide polymorphism (SNP) to investigate the genetic mating system of the Eurasian beaver (Castor fiber), a species traditionally considered to be not only socially but also genetically monogamous. We found evidence for low frequency of extra-pair paternity (EPP) and multiple paternity within litter. Only 5.4% young were produced by EPP and only 7% of litter contain at least one extra-pair young. Moreover, we found indications that only pairings of old individuals engaged in EPP. None of these pairs produced more than one litter as a result of EPP and none of the EPP events resulted in mate change. Our findings suggest that EPP in beavers might be the consequence of a lapse in mate guarding ability of old males.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Jessica L B Schaefer ◽  
John H Christy ◽  
Peter B Marko

Synopsis Pair-living is a common social system found across animal taxa, and the relationship between pair-living and reproduction varies greatly among species. Siphonaria gigas, hermaphroditic pulmonate gastropods, often live in pairs in the rocky intertidal zone of the tropical Eastern Pacific. Combining genetic parentage analysis using four polymorphic microsatellite loci with behavioral observations from a 10-week field study, we provide the first description of the mating system of a Siphonaria species incorporating genetic data. S. gigas mated both within-pair and extra-pair and three out of four paired S. gigas individuals produced egg masses with extra-pair paternity. Multiple paternity was detected, but at a relatively low frequency (19% of egg masses) compared to other marine gastropods. Behavioral data indicate one potential advantage of pair-living: paired S. gigas produced almost twice as many egg masses as their solitary counterparts over four reproductive cycles. These observations, together with constraints on the movement of S. gigas, suggest that pairing may ensure mate access and increase reproductive success.


Author(s):  
Sondra Turjeman ◽  
Ron Chen ◽  
Ran Nathan

Abstract The Eurasian Jackdaw is thought to be archetypically monogamous, but recent tagging research uncovered extra-pair copulations in the species. Here we examined extra-pair paternity (genetic monogamy) in Eurasian jackdaws breeding in the Judean Hills, Israel, at the global edge of the species range, using a set of highly polymorphic molecular microsatellites. We found roughly a sixth of nests sampled showed deviations from monogamy, more than previously found in DNA fingerprinting studies of jackdaws, suggesting a mixed mating strategy in this population. These findings support the trend of extra-pair paternity in avian species, even when social monogamy remains the rule, and highlight the importance of continued study of species throughout their geographical range.


Behaviour ◽  
2004 ◽  
Vol 141 (7) ◽  
pp. 863-880 ◽  
Author(s):  
Torbjörn von Schantz ◽  
Debora Arlt ◽  
Staffan Bensch ◽  
Dennis Hasselquist ◽  
Bengt Hansson

AbstractBreeding synchrony is hypothesised to influence the occurrence and frequency of extra-pair fertilisations (EPFs) in birds irrespective of the social mating system. The two proposed hypotheses make opposite predictions. (1) Synchronous breeding leads to a lower frequency of EPFs because males face a trade-off between mate guarding and obtaining additional matings via extra-pair copulations (EPCs) ('guarding constraint' hypothesis). (2) Synchronous breeding promotes EPFs because females are able to compare displaying males simultaneously, which provides them with more reliable cues for extra-pair mate choice ('mate assessment' hypothesis). In a study of great reed warblers (Acrocephalus arundinaceus) from 1987-1998, annual breeding was asynchronous and the frequency of EPFs was rather low (extra-pair young occurring in 6.4% of the broods). Within this population, however, there was no relationship between the frequency of EPFs and breeding synchrony, thus not favouring any of the two hypotheses. Contrary to assumptions of the hypotheses, mate guarding did not seem to constrain males from engaging in EPCs (disfavouring the 'guarding constraint' hypothesis), and females seem to have repeated opportunities to compare males irrespective of breeding synchrony (disfavouring the 'mate assessment' hypothesis). Our results suggest that breeding synchrony is not an important factor influencing patterns of EPFs in great reed warblers. The low frequency of EPFs may instead be explained by the socially polygynous mating system, where females are less constrained in their choice of a social male.


2021 ◽  
Vol 22 (4) ◽  
pp. 1832
Author(s):  
Eugene Metakovsky ◽  
Laura Pascual ◽  
Patrizia Vaccino ◽  
Viktor Melnik ◽  
Marta Rodriguez-Quijano ◽  
...  

The Gli-B1-encoded γ-gliadins and non-coding γ-gliadin DNA sequences for 15 different alleles of common wheat have been compared using seven tests: electrophoretic mobility (EM) and molecular weight (MW) of the encoded major γ-gliadin, restriction fragment length polymorphism patterns (RFLPs) (three different markers), Gli-B1-γ-gliadin-pseudogene known SNP markers (Single nucleotide polymorphisms) and sequencing the pseudogene GAG56B. It was discovered that encoded γ-gliadins, with contrasting EM, had similar MWs. However, seven allelic variants (designated from I to VII) differed among them in the other six tests: I (alleles Gli-B1i, k, m, o), II (Gli-B1n, q, s), III (Gli-B1b), IV (Gli-B1e, f, g), V (Gli-B1h), VI (Gli-B1d) and VII (Gli-B1a). Allele Gli-B1c (variant VIII) was identical to the alleles from group IV in four of the tests. Some tests might show a fine difference between alleles belonging to the same variant. Our results attest in favor of the independent origin of at least seven variants at the Gli-B1 locus that might originate from deeply diverged genotypes of the donor(s) of the B genome in hexaploid wheat and therefore might be called “heteroallelic”. The donor’s particularities at the Gli-B1 locus might be conserved since that time and decisively contribute to the current high genetic diversity of common wheat.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 705
Author(s):  
John Carlos I. Ignacio ◽  
Maricris Zaidem ◽  
Carlos Casal ◽  
Shalabh Dixit ◽  
Tobias Kretzschmar ◽  
...  

Direct seeded rice (DSR) is a mainstay for planting rice in the Americas, and it is rapidly becoming more popular in Asia. It is essential to develop rice varieties that are suitable for this type of production system. ASD1, a landrace from India, possesses several traits desirable for direct-seeded fields, including tolerance to anaerobic germination (AG). To map the genetic basis of its tolerance, we examined a population of 200 F2:3 families derived from a cross between IR64 and ASD1 using the restriction site-associated DNA sequencing (RAD-seq) technology. This genotyping platform enabled the identification of 1921 single nucleotide polymorphism (SNP) markers to construct a high-resolution genetic linkage map with an average interval of 0.9 cM. Two significant quantitative trait loci (QTLs) were detected on chromosomes 7 and 9, qAG7 and qAG9, with LOD scores of 7.1 and 15.0 and R2 values of 15.1 and 29.4, respectively. Here, we obtained more precise locations of the QTLs than traditional simple sequence repeat and low-density SNP genotyping methods and may help further dissect the genetic factors of these QTLs.


2021 ◽  
Vol 22 (7) ◽  
pp. 3477
Author(s):  
Julia Zaborowska ◽  
Bartosz Łabiszak ◽  
Annika Perry ◽  
Stephen Cavers ◽  
Witold Wachowiak

Mountain plants, challenged by vegetation time contractions and dynamic changes in environmental conditions, developed adaptations that help them to balance their growth, reproduction, survival, and regeneration. However, knowledge regarding the genetic basis of species adaptation to higher altitudes remain scarce for most plant species. Here, we attempted to identify such corresponding genomic regions of high evolutionary importance in two closely related European pines, Pinus mugo and P. uncinata, contrasting them with a reference lowland relative—P. sylvestris. We genotyped 438 samples at thousands of single nucleotide polymorphism (SNP) markers, tested their genetic differentiation and population structure followed by outlier detection and gene ontology annotations. Markers clearly differentiated the species and uncovered patterns of population structure in two of them. In P. uncinata three Pyrenean sites were grouped together, while two outlying populations constituted a separate cluster. In P. sylvestris, Spanish population appeared distinct from the remaining four European sites. Between mountain pines and the reference species, 35 candidate genes for altitude-dependent selection were identified, including such encoding proteins responsible for photosynthesis, photorespiration and cell redox homeostasis, regulation of transcription, and mRNA processing. In comparison between two mountain pines, 75 outlier SNPs were found in proteins involved mainly in the gene expression and metabolism.


2021 ◽  
Vol 19 (1) ◽  
pp. 20-28
Author(s):  
Abush Tesfaye Abebe ◽  
Adesike Oladoyin Kolawole ◽  
Nnanna Unachukwu ◽  
Godfree Chigeza ◽  
Hailu Tefera ◽  
...  

AbstractSoybean (Glycine max (L.) Merr.) is an important legume crop with high commercial value widely cultivated globally. Thus, the genetic characterization of the existing soybean germplasm will provide useful information for enhanced conservation, improvement and future utilization. This study aimed to assess the extent of genetic diversity of soybean elite breeding lines and varieties developed by the soybean breeding programme of the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria. The genetic diversity of 65 soybean genotypes was studied using single-nucleotide polymorphism (SNP) markers. The result revealed that 2446 alleles were detected, and the indicators for allelic richness and diversity had good differentiating power in assessing the diversity of the genotypes. The three complementary approaches used in the study grouped the germplasm into three major clusters based on genetic relatedness. The analysis of molecular variance revealed that 71% (P < 0.001) variation was due to among individual genotypes, while 11% (P < 0.001) was ascribed to differences among the three clusters, and the fixation index (FST) was 0.11 for the SNP loci, signifying moderate genetic differentiation among the genotypes. The identified private alleles indicate that the soybean germplasm contains diverse variability that is yet to be exploited. The SNP markers revealed high diversity in the studied germplasm and found to be efficient for assessing genetic diversity in the crop. These results provide valuable information that might be utilized for assessing the genetic variability of soybean and other legume crops germplasm by breeding programmes.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Weifan Gao ◽  
Sukumar Saha ◽  
Din-Pow Ma ◽  
Yufang Guo ◽  
Johnie N. Jenkins ◽  
...  

A cotton fiber cDNA and its genomic sequences encoding an A-type cyclin-dependent kinase (GhCDKA) were cloned and characterized. The encoded GhCDKA protein contains the conserved cyclin-binding, ATP binding, and catalytic domains. Northern blot and RT-PCR analysis revealed that the GhCDKA transcript was high in 5–10 DPA fibers, moderate in 15 and 20 DPA fibers and roots, and low in flowers and leaves. GhCDKA protein levels in fibers increased from 5–15 DPA, peaked at 15 DPA, and decreased from 15 t0 20 DPA. The differential expression of GhCDKA suggested that the gene might play an important role in fiber development. The GhCDKA sequence data was used to develop single nucleotide polymorphism (SNP) markers specific for the CDKA gene in cotton. A primer specific to one of the SNPs was used to locate the CDKA gene to chromosome 16 by deletion analysis using a series of hypoaneuploid interspecific hybrids.


Sign in / Sign up

Export Citation Format

Share Document