scholarly journals DNA methylation marks inter-nucleosome linker regions throughout the human genome

Author(s):  
Benjamin P. Berman ◽  
Yaping Liu ◽  
Theresa K. Kelly

Nucleosome organization and DNA methylation are two epigenetic mechanisms that are important for proper control of mammalian transcription. Numerous lines of evidence suggest an interaction between these two mechanisms, but the nature of this interaction in vivo remains elusive. Whole-genome DNA methylation sequencing studies have shown that human methylation levels are periodic at intervals of approximately 190 bp, suggesting a genome-wide relationship between the two marks. A recent report (Chodavarapu et al., 2010) attributed this to higher methylation levels of DNA within nucleosomes. Here, we propose an alternate explanation for these nucleosomal periodicities. By examining methylation patterns in published datasets, we find that genome-wide methylation levels are highest within the linker regions that occur between nucleosomes in multi-nucleosome arrays. This effect is most prominent within long-range Partially Methylated Domains (PMDs) and the strongly positioned nucleosomes that flank CTCF binding sites. The CTCF-flanking nucleosomes retain positioning even in regions completely devoid of CpG dinucleotides, suggesting that DNA methylation is not required for proper positioning. We propose that DNA methylation is inhibited by histone proteins at CTCF and other unknown classes of nucleosomes within PMDs.

2013 ◽  
Author(s):  
Benjamin P. Berman ◽  
Yaping Liu ◽  
Theresa K. Kelly

Background: Nucleosome organization and DNA methylation are two mechanisms that are important for proper control of mammalian transcription, as well as epigenetic dysregulation associated with cancer. Whole-genome DNA methylation sequencing studies have found that methylation levels in the human genome show periodicities of approximately 190 bp, suggesting a genome-wide relationship between the two marks. A recent report (Chodavarapu et al., 2010) attributed this to higher methylation levels of DNA within nucleosomes. Here, we analyzed a number of published datasets and found a more compelling alternative explanation, namely that methylation levels are highest in linker regions between nucleosomes. Results: Reanalyzing the data from (Chodavarapu et al., 2010), we found that nucleosome-associated methylation could be strongly confounded by known sequence-related biases of the next-generation sequencing technologies. By accounting for these biases and using an unrelated nucleosome profiling technology, NOMe-seq, we found that genome-wide methylation was actually highest within linker regions occurring between nucleosomes in multi-nucleosome arrays. This effect was consistent among several methylation datasets generated independently using two unrelated methylation assays. Linker-associated methylation was most prominent within long Partially Methylated Domains (PMDs) and the positioned nucleosomes that flank CTCF binding sites. CTCF adjacent nucleosomes retained the correct positioning in regions completely devoid of CpG dinucleotides, suggesting that DNA methylation is not required for proper nucleosomes positioning. Conclusions: The biological mechanisms responsible for DNA methylation patterns outside of gene promoters remain poorly understood. We identified a significant genome-wide relationship between nucleosome organization and DNA methylation, which can be used to more accurately analyze and understand the epigenetic changes that accompany cancer and other diseases.


2013 ◽  
Author(s):  
Benjamin P. Berman ◽  
Yaping Liu ◽  
Theresa K. Kelly

Background: Nucleosome organization and DNA methylation are two mechanisms that are important for proper control of mammalian transcription, as well as epigenetic dysregulation associated with cancer. Whole-genome DNA methylation sequencing studies have found that methylation levels in the human genome show periodicities of approximately 190 bp, suggesting a genome-wide relationship between the two marks. A recent report (Chodavarapu et al., 2010) attributed this to higher methylation levels of DNA within nucleosomes. Here, we analyzed a number of published datasets and found a more compelling alternative explanation, namely that methylation levels are highest in linker regions between nucleosomes. Results: Reanalyzing the data from (Chodavarapu et al., 2010), we found that nucleosome-associated methylation could be strongly confounded by known sequence-related biases of the next-generation sequencing technologies. By accounting for these biases and using an unrelated nucleosome profiling technology, NOMe-seq, we found that genome-wide methylation was actually highest within linker regions occurring between nucleosomes in multi-nucleosome arrays. This effect was consistent among several methylation datasets generated independently using two unrelated methylation assays. Linker-associated methylation was most prominent within long Partially Methylated Domains (PMDs) and the positioned nucleosomes that flank CTCF binding sites. CTCF adjacent nucleosomes retained the correct positioning in regions completely devoid of CpG dinucleotides, suggesting that DNA methylation is not required for proper nucleosomes positioning. Conclusions: The biological mechanisms responsible for DNA methylation patterns outside of gene promoters remain poorly understood. We identified a significant genome-wide relationship between nucleosome organization and DNA methylation, which can be used to more accurately analyze and understand the epigenetic changes that accompany cancer and other diseases.


2013 ◽  
Author(s):  
Benjamin P. Berman ◽  
Yaping Liu ◽  
Theresa K. Kelly

Background: Nucleosome organization and DNA methylation are two mechanisms that are important for proper control of mammalian transcription, as well as epigenetic dysregulation associated with cancer. Whole-genome DNA methylation sequencing studies have found that methylation levels in the human genome show periodicities of approximately 190 bp, suggesting a genome-wide relationship between the two marks. A recent report (Chodavarapu et al., 2010) attributed this to higher methylation levels of DNA within nucleosomes. Here, we analyzed a number of published datasets and found a more compelling alternative explanation, namely that methylation levels are highest in linker regions between nucleosomes. Results: Reanalyzing the data from (Chodavarapu et al., 2010), we found that nucleosome-associated methylation could be strongly confounded by known sequence-related biases of the next-generation sequencing technologies. By accounting for these biases and using an unrelated nucleosome profiling technology, NOMe-seq, we found that genome-wide methylation was actually highest within linker regions occurring between nucleosomes in multi-nucleosome arrays. This effect was consistent among several methylation datasets generated independently using two unrelated methylation assays. Linker-associated methylation was most prominent within long Partially Methylated Domains (PMDs) and the positioned nucleosomes that flank CTCF binding sites. CTCF adjacent nucleosomes retained the correct positioning in regions completely devoid of CpG dinucleotides, suggesting that DNA methylation is not required for proper nucleosomes positioning. Conclusions: The biological mechanisms responsible for DNA methylation patterns outside of gene promoters remain poorly understood. We identified a significant genome-wide relationship between nucleosome organization and DNA methylation, which can be used to more accurately analyze and understand the epigenetic changes that accompany cancer and other diseases.


PLoS Genetics ◽  
2011 ◽  
Vol 7 (2) ◽  
pp. e1001316 ◽  
Author(s):  
Athma A. Pai ◽  
Jordana T. Bell ◽  
John C. Marioni ◽  
Jonathan K. Pritchard ◽  
Yoav Gilad

2018 ◽  
Author(s):  
Kyster K. Nanan ◽  
David M. Sturgill ◽  
Maria F. Prigge ◽  
Morgan Thenoz ◽  
Allissa A. Dillman ◽  
...  

SummaryThe mechanisms supporting dynamic regulation of CTCF binding sites remain poorly understood. Here we describe the TET-catalyzed 5-methylcytosine derivative, 5-carboxylcytosine (5caC) as a factor driving new CTCF binding within genomic DNA. Through a combination of in vivo and in vitro approaches, we reveal that 5caC generally strengthens CTCF association with DNA and facilitates binding to suboptimal sequences. Dramatically, profiling of CTCF binding in a cellular model that accumulates genomic 5caC identified ∼13,000 new CTCF sites. The new sites were enriched for overlapping 5caC and were marked by an overall reduction in CTCF motif strength. As CTCF has multiple roles in gene expression, these findings have wide-reaching implications and point to induced 5caC as a potential mechanism to achieve differential CTCF binding in cells.


2017 ◽  
Vol 114 (36) ◽  
pp. E7526-E7535 ◽  
Author(s):  
Danuta M. Jeziorska ◽  
Robert J. S. Murray ◽  
Marco De Gobbi ◽  
Ricarda Gaentzsch ◽  
David Garrick ◽  
...  

The human genome contains ∼30,000 CpG islands (CGIs). While CGIs associated with promoters nearly always remain unmethylated, many of the ∼9,000 CGIs lying within gene bodies become methylated during development and differentiation. Both promoter and intragenic CGIs may also become abnormally methylated as a result of genome rearrangements and in malignancy. The epigenetic mechanisms by which some CGIs become methylated but others, in the same cell, remain unmethylated in these situations are poorly understood. Analyzing specific loci and using a genome-wide analysis, we show that transcription running across CGIs, associated with specific chromatin modifications, is required for DNA methyltransferase 3B (DNMT3B)-mediated DNA methylation of many naturally occurring intragenic CGIs. Importantly, we also show that a subgroup of intragenic CGIs is not sensitive to this process of transcription-mediated methylation and that this correlates with their individual intrinsic capacity to initiate transcription in vivo. We propose a general model of how transcription could act as a primary determinant of the patterns of CGI methylation in normal development and differentiation, and in human disease.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jasmin Gegner ◽  
Heiko Vogel ◽  
André Billion ◽  
Frank Förster ◽  
Andreas Vilcinskas

The transition between morphologically distinct phenotypes during complete metamorphosis in holometabolous insects is accompanied by fundamental transcriptional reprogramming. Using the tobacco hornworm (Manduca sexta), a powerful model for the analysis of insect evolution and development, we conducted a genome-wide comparative analysis of gene expression and DNA methylation in caterpillars and adults to determine whether complete metamorphosis has an epigenetic basis in this species. Bisulfite sequencing indicated a generally low level of DNA methylation with a unimodal CpGO/E distribution. Expression analysis revealed that 24 % of all known M. sexta genes (3.729) were upregulated in last-instar larvae relative to the adult moth, whereas 26 % (4.077) were downregulated. We also identified 4.946 loci and 4.960 regions showing stage-specific differential methylation. Interestingly, genes encoding histone acetyltransferases and histone deacetylases were differentially methylated in the larvae and adults, indicating there is crosstalk between different epigenetic mechanisms. The distinct sets of methylated genes in M. sexta larvae and adults suggest that complete metamorphosis involves epigenetic modifications associated with profound transcriptional reprogramming, involving approximately half of all the genes in this species.


PLoS ONE ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. e0140467 ◽  
Author(s):  
Dessie Salilew-Wondim ◽  
Eric Fournier ◽  
Michael Hoelker ◽  
Mohammed Saeed-Zidane ◽  
Ernst Tholen ◽  
...  

Mobile DNA ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jessica L. Elmer ◽  
Amir D. Hay ◽  
Noah J. Kessler ◽  
Tessa M. Bertozzi ◽  
Eve A. C. Ainscough ◽  
...  

Abstract Background Transposable elements (TEs) are enriched in cytosine methylation, preventing their mobility within the genome. We previously identified a genome-wide repertoire of candidate intracisternal A particle (IAP) TEs in mice that exhibit inter-individual variability in this methylation (VM-IAPs) with implications for genome function. Results Here we validate these metastable epialleles and discover a novel class that exhibit tissue specificity (tsVM-IAPs) in addition to those with uniform methylation in all tissues (constitutive- or cVM-IAPs); both types have the potential to regulate genes in cis. Screening for variable methylation at other TEs shows that this phenomenon is largely limited to IAPs, which are amongst the youngest and most active endogenous retroviruses. We identify sequences enriched within cVM-IAPs, but determine that these are not sufficient to confer epigenetic variability. CTCF is enriched at VM-IAPs with binding inversely correlated with DNA methylation. We uncover dynamic physical interactions between cVM-IAPs with low methylation ranges and other genomic loci, suggesting that VM-IAPs have the potential for long-range regulation. Conclusion Our findings indicate that a recently evolved interplay between genetic sequence, CTCF binding, and DNA methylation at young TEs can result in inter-individual variability in transcriptional outcomes with implications for phenotypic variation.


BMC Genomics ◽  
2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Dessie Salilew-Wondim ◽  
Mohammed Saeed-Zidane ◽  
Michael Hoelker ◽  
Samuel Gebremedhn ◽  
Mikhaël Poirier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document