scholarly journals Three-dimensional anatomy of the knee joint of ostriches (Struthio camelus)

Author(s):  
Kyle P Chadwick ◽  
Sophie Regnault ◽  
Vivian Allen ◽  
John R. Hutchinson

The three-dimensional anatomy of the ostrich (Struthio camelus) knee (femorotibial, femorofibular, and femoropatellar) joint has scarcely been studied, and could elucidate certain mechanobiological properties of sesamoid bones. The adult ostrich is unique in that it has double patellae, while another similar ratite bird, the emu, has none. Understanding why these patellae form and what purpose they may serve is dually important for future studies on ratites as well as understanding mechanobiological characteristics of sesamoid bone development. For this purpose, we present a three-dimensional anatomical study of the ostrich knee joint, detailing osteology, ligaments and menisci, and myology. We have identified seven muscles which connect to the two patellae and compare our findings to past descriptions. These descriptions can be used to further study the biomechanical loading and implications of the double patella in the ostrich.

2014 ◽  
Author(s):  
Kyle P Chadwick ◽  
Sophie Regnault ◽  
Vivian Allen ◽  
John R. Hutchinson

The three-dimensional anatomy of the ostrich (Struthio camelus) knee (femorotibial, femorofibular, and femoropatellar) joint has scarcely been studied, and could elucidate certain mechanobiological properties of sesamoid bones. The adult ostrich is unique in that it has double patellae, while another similar ratite bird, the emu, has none. Understanding why these patellae form and what purpose they may serve is dually important for future studies on ratites as well as understanding mechanobiological characteristics of sesamoid bone development. For this purpose, we present a three-dimensional anatomical study of the ostrich knee joint, detailing osteology, ligaments and menisci, and myology. We have identified seven muscles which connect to the two patellae and compare our findings to past descriptions. These descriptions can be used to further study the biomechanical loading and implications of the double patella in the ostrich.


2017 ◽  
Vol 7 (2) ◽  
pp. 11-14 ◽  
Author(s):  
Indu Ghimire ◽  
Surendra Maharjan ◽  
Ganesh Bahadur Pokharel ◽  
Kamal Subedi

The purpose of this study was to examine the plain AP radiograph of foot and lateral radiograph of knee in order to determine the prevalence and size of sesamoid bone in different part of foot and on the posterior aspect of the knee joint. A cross-sectional study was performed in Department of Radiology and Imaging, Tribhuvan University Teaching Hospital from July to September 2014. A total of 206 radiographs of foot (55) and knee (155) were collected. 121 (58.7%) were female and 85 (41.3%) were male. The most common site of sesamoid bone in foot was in the first metatarsal joint (96.4%) whereas the sesamoid bone in knee joint, fabella was found in 12.3% of total cases. The prevalence is more common in female than in male. The length and breadth of the sesamoid bones were measured and then area of bones was calculated. The size of medial and lateral sesamoid bone in the first MTP Joint was measured 0.6225 cm2 and 0.8261 cm2 respectively. The mean size of sesamoid bone of knee, fabella was 0.2818 cm2.


PeerJ ◽  
2014 ◽  
Vol 2 ◽  
pp. e706 ◽  
Author(s):  
Kyle P. Chadwick ◽  
Sophie Regnault ◽  
Vivian Allen ◽  
John R. Hutchinson

2018 ◽  
Author(s):  
Shai Eyal ◽  
Sarah Rubin ◽  
Sharon Krief ◽  
Lihi Levin ◽  
Elazar Zelzer

ABSTRACTSesamoid bones are a special group of small auxiliary bones that form in proximity to joints and contribute to their stability and function. Sesamoid bones display high degree of variability in size, location, penetrance and anatomical connection to the main skeleton across vertebrate species. Therefore, providing a comprehensive developmental model or classification system for sesamoid bones is challenging. Here, we examine the developmental mechanisms of three anatomically different sesamoid bones, namely patella, lateral fabella and digit sesamoids. Through a comprehensive comparative analysis at the cellular, molecular and mechanical levels, we demonstrate that all three types of sesamoid bones originated from Sox9+/Scx+ progenitors under the regulation of TGFβ and independent of mechanical stimuli from muscles. We show that BMP4 was necessary specifically for differentiation of patella but not of lateral fabella or digit sesamoids, whereas BMP2 regulated the growth of all examined sesamoids. Next, we show that whereas patella and digit sesamoids initially formed in juxtaposition to long bones, the lateral fabella formed independently at a distance. Finally, we provide evidence suggesting that while patella detached from the femur by formation of a synovial joint, digit sesamoids detached from the phalanx by a fibrocartilage joint. Collectively, these findings highlight both common and divergent molecular and mechanical features of sesamoid bone development, thereby advancing our understanding of their evolutionary plasticity.


Skull Base ◽  
2009 ◽  
Vol 19 (01) ◽  
Author(s):  
Laura Columbano ◽  
Wolf Lüdemann ◽  
Lennart Stieglitz ◽  
Mario Giordano ◽  
Amir Samii ◽  
...  

2021 ◽  
Vol 46 (4) ◽  
pp. 352-359
Author(s):  
Susumu Saito ◽  
Itaru Tsuge ◽  
Hiroki Yamanaka ◽  
Naoki Morimoto

Wassel VI radial polydactyly is associated with metacarpal adduction and radial deviation of the metacarpophalangeal joint of the ulnar duplicate. The soft tissue abnormalities responsible for these deformities were characterized using preoperative multi-planar three-dimensional ultrasound and intraoperative observation in four patients. In all patients, the abductor pollicis brevis and superficial head of the flexor pollicis brevis inserted into the radial first metacarpal, whereas the adductor pollicis and deep head of the flexor pollicis brevis inserted into the ulnar thumb. Aberrant location of the flexor pollicis longus and absence of the A1 pulley system was associated with severe radial deviation. An additional superficial thenar muscle along the ulnar metacarpal was associated with minimal metacarpal adduction. Uneven forces on the ulnar duplicate could be associated with these characteristic deformities and joint instability. Knowledge of these abnormalities allows better planning of surgery and further insight into this rare radial polydactyly configuration. Level of evidence: II


2003 ◽  
Vol 15 (05) ◽  
pp. 186-192 ◽  
Author(s):  
WEN-LAN WU ◽  
JIA-HROUNG WU ◽  
HWAI-TING LIN ◽  
GWO-JAW WANG

The purposes of the present study were to (1) investigate the effects of the arm movement and initial knee joint angle employed in standing long jump by the ground reaction force analysis and three-dimensional motion analysis; and (2) investigate how the jump performance of the female gender related to the body configuration. Thirty-four healthy adult females performed standing long jump on a force platform with full effort. Body segment and joint angles were analyzed by three-dimensional motion analysis system. Using kinetic and kinematic data, the trajectories on mass center of body, knee joint angle, magnitude of peak takeoff force, and impulse generation in preparing phase were calculated. Average standing long jump performances with free arm motion were +1.5 times above performance with restricted arm motion in both knee initial angles. The performances with knee 90° initial flexion were +1.2 times above performance with knee 45° initial flexion in free and restricted arm motions. Judging by trajectories of the center mass of body (COM), free arm motion improves jump distance by anterior displacement of the COM in starting position. The takeoff velocity with 90° knee initial angle was as much as 11% higher than in with 45° knee initial angle. However, the takeoff angles on the COM trajectory showed no significant differences between each other. It was found that starting jump from 90° bend knee relatively extended the time that the force is applied by the leg muscles. To compare the body configurations and the jumping scores, there were no significant correlations between jump scores and anthropometry data. The greater muscle mass or longer leg did not correlated well with the superior jumping performance.


1999 ◽  
Vol 121 (6) ◽  
pp. 650-656 ◽  
Author(s):  
F. T. Sheehan ◽  
F. E. Zajac ◽  
J. E. Drace

Improper patellar tracking is often considered to be the cause of patellar-femoral pain. Unfortunately, our knowledge of patellar-femoral-tibial (knee) joint kinematics is severely limited due to a lack of three-dimensional, noninvasive, in vivo measurement techniques. This study presents the first large-scale, dynamic, three-dimensional, noninvasive, in vivo study of nonimpaired knee joint kinematics during volitional leg extensions. Cine-phase contrast magnetic resonance imaging was used to measure the velocity profiles of the patella, femur, and tibia in 18 unimpaired knees during leg extensions, resisted by a 34 N weight. Bone displacements were calculated through integration and then converted into three-dimensional orientation angles. We found that the patella displaced laterally, superiorly, and anteriorly as the knee extended. Further, patellar flexion lagged knee flexion, patellar tilt was variable, and patellar rotation was fairly constant throughout extension.


Sign in / Sign up

Export Citation Format

Share Document