scholarly journals Characterization of four new monoclonal antibodies against the distal N-terminal region of PrPc

Author(s):  
Alessandro Didonna ◽  
Anja Colja Venturini ◽  
Katrina Hartman ◽  
Tanja Vranac ◽  
Vladka Curin Serbec ◽  
...  

Prion diseases are a group of fatal neurodegenerative disorders that affect humans and animals. They are characterized by the accumulation in the central nervous system of a pathological form of the host-encoded prion protein (PrPC). The prion protein is a membrane glycoprotein that consists of two domains: a globular, structured C-terminus and an unstructured N-terminus. The N-terminal part of the protein is involved in different functions in both health and disease. In the present work we discuss the production and biochemical characterization of a panel of four monoclonal antibodies (mAbs) against the distal N-terminus of PrPC using a well-established methodology based on the immunization of Prnp0/0 mice. Additionally, we show their ability to block prion (PrPSc) replication at nanomolar concentrations in a cell culture model of prion infection. These mAbs represent a promising tool for prion diagnostics and for studying the physiological role of the N-terminal domain of PrPC.

2014 ◽  
Author(s):  
Alessandro Didonna ◽  
Anja Colja Venturini ◽  
Katrina Hartman ◽  
Tanja Vranac ◽  
Vladka Curin Serbec ◽  
...  

Prion diseases are a group of fatal neurodegenerative disorders that affect humans and animals. They are characterized by the accumulation in the central nervous system of a pathological form of the host-encoded prion protein (PrPC). The prion protein is a membrane glycoprotein that consists of two domains: a globular, structured C-terminus and an unstructured N-terminus. The N-terminal part of the protein is involved in different functions in both health and disease. In the present work we discuss the production and biochemical characterization of a panel of four monoclonal antibodies (mAbs) against the distal N-terminus of PrPC using a well-established methodology based on the immunization of Prnp0/0 mice. Additionally, we show their ability to block prion (PrPSc) replication at nanomolar concentrations in a cell culture model of prion infection. These mAbs represent a promising tool for prion diagnostics and for studying the physiological role of the N-terminal domain of PrPC.


2011 ◽  
Vol 43 (12) ◽  
pp. 711-725 ◽  
Author(s):  
Stefano Benvegnù ◽  
Paola Roncaglia ◽  
Federica Agostini ◽  
Cristina Casalone ◽  
Cristiano Corona ◽  
...  

The conversion of the cellular prion protein (PrPC) to an abnormal and protease-resistant isoform is the key event in prion diseases. Mice lacking PrPC are resistant to prion infection, and downregulation of PrPC during prion infection prevents neuronal loss and the progression to clinical disease. These results are suggestive of the potential beneficial effect of silencing PrPC during prion diseases. However, the silencing of a protein that is widely expressed throughout the central nervous system could be detrimental to brain homeostasis. The physiological role of PrPC remains still unclear, but several putative functions (e.g., neuronal development and maintenance) have been proposed. To assess the influence of PrPC on gene expression profile in the mouse brain, we undertook a microarray analysis by using RNA isolated from the hippocampus at two different developmental stages: newborn (4.5-day-old) and adult (3-mo-old) mice, both from wild-type and Prnp0/0 animals. Comparing the different datasets allowed us to identify “commonly” co-regulated genes and “uniquely” deregulated genes during postnatal development. The absence of PrPC affected several biological pathways, the most representative being cell signaling, cell-cell communication and transduction processes, calcium homeostasis, nervous system development, synaptic transmission, and cell adhesion. However, there was only a moderate alteration of the gene expression profile in our animal models. PrPC deficiency did not lead to a dramatic alteration of gene expression profile and produced moderately altered gene expression levels from young to adult animals. Thus, our results may provide additional support to silencing endogenous PrPC levels as therapeutic approach to prion diseases.


2008 ◽  
Vol 89 (6) ◽  
pp. 1533-1544 ◽  
Author(s):  
Chang-Hyun Song ◽  
Hidefumi Furuoka ◽  
Chan-Lan Kim ◽  
Michiko Ogino ◽  
Akio Suzuki ◽  
...  

It is well known that anti-prion protein (PrP) monoclonal antibodies (mAbs) inhibit abnormal isoform PrP (PrPSc) formation in cell culture. Additionally, passive immunization of anti-PrP mAbs protects the animals from prion infection via peripheral challenge when mAbs are administered simultaneously or soon after prion inoculation. Thus, anti-PrP mAbs are candidates for the treatment of prion diseases. However, the effects of mAbs on disease progression in the middle and late stages of the disease remain unclear. This study carried out intraventricular infusion of mAbs into prion-infected mice before and after clinical onset to assess their ability to delay disease progression. A 4-week infusion of anti-PrP mAbs initiated at 120 days post-inoculation (p.i.), which is just after clinical onset, reduced PrPSc levels to 70–80 % of those found in mice treated with a negative-control mAb. Spongiform changes, microglial activation and astrogliosis in the hippocampus and thalamus appeared milder in mice treated with anti-PrP mAbs than in those treated with a negative-control mAb. Treatment with anti-PrP mAb prolonged the survival of mice infected with Chandler or Obihiro strain when infusion was initiated at 60 days p.i., at which point PrPSc is detectable in the brain. In contrast, infusion initiated after clinical onset prolonged the survival time by about 8 % only in mice infected with the Chandler strain. Although the effects on survival varied for different prion strains, the anti-PrP mAb could partly prevent disease progression, even after clinical onset, suggesting immunotherapy as a candidate for treatment of prion diseases.


2001 ◽  
Vol 7 (S2) ◽  
pp. 1030-1031
Author(s):  
J.M. Robinson

There are three members of the caveolin (CAV) gene family that give rise to four polypeptides. These polypeptides are CAV-1α, CAV-1β, CAV-2, and CAV-3. The CAV-1β isoform is a truncated form of CAV-1α that lacks 31 amino acids at the N-terminus of the molecule. The CAV- 1β molecule arises through an alternative splicing mechanism.Caveolae are specialized plasma membrane microdomains that are expressed at high levels in some cell types (e.g., endothelium, adipocytes, fibroblasts). These specialized regions of the plasma membrane have a characteristic omega-shaped appearance with diameters ranging from 40-90 run. They are distinct from clathrin-coated pits since they lack the characteristic coated appearance in electron microscopy. Caveolae were among the first structures to be discovered by biological electron microscopy. However, biochemical characterization of these structures did not begin in earnest until a marker protein was identified. The initial marker was the 22-kDa protein known as caveolin.


Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 482
Author(s):  
Simote Foliaki ◽  
Bradley Groveman ◽  
Jue Yuan ◽  
Ryan Walters ◽  
Shulin Zhang ◽  
...  

Cerebral organoids (COs) are a self-organizing three-dimensional brain tissue mimicking the human cerebral cortex. COs are a promising new system for modelling pathological features of neurological disorders, including prion diseases. COs expressing normal prion protein (PrPC) are susceptible to prion infection when exposed to the disease isoforms of PrP (PrPD). This causes the COs to develop aspects of prion disease pathology considered hallmarks of disease, including the production of detergent-insoluble, protease-resistant misfolded PrPD species capable of seeding the production of more misfolded species. To determine whether COs can model aspects of familial prion diseases, we produced COs from donor fibroblasts carrying the E200K mutation, the most common cause of human familial prion disease. The mature E200K COs were assessed for the hallmarks of prion disease. We found that up to 12 months post-differentiation, E200K COs harbored no PrPD as confirmed by the absence of detergent-insoluble, protease-resistant, and seeding-active PrP species. Our results suggest that the presence of the E200K mutation within the prion gene is insufficient to cause disease in neuronal tissue. Therefore, other factors, such as further genetic modifiers or aging processes, may influence the onset of misfolding.


Toxins ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 9 ◽  
Author(s):  
Yongfeng Fan ◽  
Jason R. Barash ◽  
Fraser Conrad ◽  
Jianlong Lou ◽  
Christina Tam ◽  
...  

Background: Botulinum neurotoxins (BoNTs) comprise seven agreed-on serotypes, A through G. In 2014, a novel chimeric neurotoxin produced by clostridial strain IBCA10-7060 was reported as BoNT/H, with subsequent names of BoNT/FA or BoNT/HA based on sequence homology of the N-terminus to BoNT/F, the C-terminus to BoNT/A and neutralization studies. The purpose of this study was to define the immunologic identity of the novel BoNT. Methods: monoclonal antibodies (mAbs) to the novel BoNT/H N-terminus were generated by antibody repertoire cloning and yeast display after immunization with BoNT/H LC-HN or BoNT/F LC-HN. Results: 21 unique BoNT/H LC-HN mAbs were obtained; 15 from the BoNT/H LC-HN immunized library (KD 0.78 nM to 182 nM) and six from the BoNT/F-immunized libraries (KD 20.5 nM to 1490 nM). A total of 15 of 21 mAbs also bound catalytically inactive BoNT/H holotoxin. The mAbs bound nine non-overlapping epitopes on the BoNT/H LC-HN. None of the mAbs showed binding to BoNT serotypes A-G, nor any of the seven subtypes of BoNT/F, except for one mAb that weakly bound BoNT/F5. Conclusions: The results, combined with the chimeric structure and neutralization by anti-A, but not anti-F antitoxin indicate that immunologically the novel BoNT is BoNT/HA. This determination has significant implications for existing countermeasures and potential vulnerabilities.


2015 ◽  
Vol 89 (11) ◽  
pp. 6022-6032 ◽  
Author(s):  
Brent Race ◽  
Katie Phillips ◽  
Kimberly Meade-White ◽  
James Striebel ◽  
Bruce Chesebro

ABSTRACTPrion protein (PrP) is found in all mammals, mostly as a glycoprotein anchored to the plasma membrane by a C-terminal glycosylphosphatidylinositol (GPI) linkage. Following prion infection, host protease-sensitive prion protein (PrPsen or PrPC) is converted into an abnormal, disease-associated, protease-resistant form (PrPres). Biochemical characteristics, such as the PrP amino acid sequence, and posttranslational modifications, such as glycosylation and GPI anchoring, can affect the transmissibility of prions as well as the biochemical properties of the PrPres generated. Previousin vivostudies on the effects of GPI anchoring on prion infectivity have not examined cross-species transmission. In this study, we tested the effect of lack of GPI anchoring on a species barrier model using mice expressing human PrP. In this model, anchorless 22L prions derived from tg44 mice were more infectious than 22L prions derived from C57BL/10 mice when tested in tg66 transgenic mice, which expressed wild-type anchored human PrP at 8- to 16-fold above normal. Thus, the lack of the GPI anchor on the PrPres from tg44 mice appeared to reduce the effect of the mouse-human PrP species barrier. In contrast, neither source of prions induced disease in tgRM transgenic mice, which expressed human PrP at 2- to 4-fold above normal.IMPORTANCEPrion protein (PrP) is found in all mammals, usually attached to cells by an anchor molecule called GPI. Following prion infection, PrP is converted into a disease-associated form (PrPres). While most prion diseases are species specific, this finding is not consistent, and species barriers differ in strength. The amino acid sequence of PrP varies among species, and this variability affects prion species barriers. However, other PrP modifications, including glycosylation and GPI anchoring, may also influence cross-species infectivity. We studied the effect of PrP GPI anchoring using a mouse-to-human species barrier model. Experiments showed that prions produced by mice expressing only anchorless PrP were more infectious than prions produced in mice expressing anchored PrP. Thus, the lack of the GPI anchor on prions reduced the effect of the mouse-human species barrier. Our results suggest that prion diseases that produce higher levels of anchorless PrP may pose an increased risk for cross-species infection.


1991 ◽  
Vol 279 (3) ◽  
pp. 787-792 ◽  
Author(s):  
D M Poole ◽  
A J Durrant ◽  
G P Hazlewood ◽  
H J Gilbert

The N-terminal 160 or 267 residues of xylanase A from Pseudomonas fluorescens subsp. cellulosa, containing a non-catalytic cellulose-binding domain (CBD), were fused to the N-terminus of the catalytic domain of endoglucanase E (EGE') from Clostridium thermocellum. A further hybrid enzyme was constructed consisting of the 347 N-terminal residues of xylanase C (XYLC) from P. fluorescens subsp. cellulosa, which also constitutes a CBD, fused to the N-terminus of endoglucanase A (EGA) from Ruminococcus albus. The three hybrid enzymes bound to insoluble cellulose, and could be eluted such that cellulose-binding capacity and catalytic activity were retained. The catalytic properties of the fusion enzymes were similar to EGE' and EGA respectively. Residues 37-347 and 34-347 of XYLC were fused to the C-terminus of EGE' and the 10 amino acids encoded by the multiple cloning sequence of pMTL22p respectively. The two hybrid proteins did not bind cellulose, although residues 39-139 of XYLC were shown previously to constitute a functional CBD. The putative role of the P. fluorescens subsp. cellulosa CBD in cellulase action is discussed.


Sign in / Sign up

Export Citation Format

Share Document