scholarly journals Fast Track DNA Analysis Suite for human identification

Author(s):  
Peter T Docker ◽  
Joanna Baker ◽  
Steve Haswell

This paper details the development of a portable ‘Lab on chip’ DNA analyser that was developed to facilitate rapid analysis of DNA samples for ‘at scene of crime’ and in custody suite situations where human identification is required rapidly. This system was proven to work with human DNA for 3 loci, namely VWA, D21 and D18 taken from raw sample through PCR separation to detection within 90miniutes. Once the sample was loaded onto the microfluidic chip which in turn was loaded into the instrument no further human interaction took place. This paper details the approach to the biochemistry, hardware before going on to give results proving the proof of principle and then the authors’ conclusions.

2013 ◽  
Author(s):  
Peter T Docker ◽  
Joanna Baker ◽  
Steve Haswell

This paper details the development of a portable ‘Lab on chip’ DNA analyser that was developed to facilitate rapid analysis of DNA samples for ‘at scene of crime’ and in custody suite situations where human identification is required rapidly. This system was proven to work with human DNA for 3 loci, namely VWA, D21 and D18 taken from raw sample through PCR separation to detection within 90miniutes. Once the sample was loaded onto the microfluidic chip which in turn was loaded into the instrument no further human interaction took place. This paper details the approach to the biochemistry, hardware before going on to give results proving the proof of principle and then the authors’ conclusions.


2011 ◽  
Author(s):  
Johannes R. Peham ◽  
Lisa-Maria Recnik ◽  
Walter Grienauer ◽  
Michael J. Vellekoop ◽  
Christa Nöhammer ◽  
...  

2020 ◽  
Vol 30 (11) ◽  
pp. 115012 ◽  
Author(s):  
Daniel Podbiel ◽  
Lorenz Boecking ◽  
Hannah Bott ◽  
Julian Kassel ◽  
Daniel Czurratis ◽  
...  

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 982 ◽  
Author(s):  
Maria Francesca Santangelo ◽  
Ivan Shtepliuk ◽  
Donatella Puglisi ◽  
Daniel Filippini ◽  
Rositsa Yakimova ◽  
...  

Two-dimensional materials may constitute key elements in the development of a sensing platform where extremely high sensitivity is required, since even minimal chemical interaction can generate appreciable changes in the electronic state of the material. In this work, we investigate the sensing performance of epitaxial graphene on Si-face 4H-SiC (EG/SiC) for liquid-phase detection of heavy metals (e.g., Pb). The integration of preparatory steps needed for sample conditioning is included in the sensing platform, exploiting fast prototyping using a 3D printer, which allows direct fabrication of a microfluidic chip incorporating all the features required to connect and execute the Lab-on-chip (LOC) functions. It is demonstrated that interaction of Pb2+ ions in water-based solutions with the EG enhances its conductivity exhibiting a Langmuir correlation between signal and Pb2+ concentration. Several concentrations of Pb2+ solutions ranging from 125 nM to 500 µM were analyzed showing good stability and reproducibility over time.


2020 ◽  
Vol 36 (4) ◽  
pp. 112-120
Author(s):  
A.V. Zverev ◽  
M. Andronik ◽  
V.V. Echeistov ◽  
Z.H. Issabayeva ◽  
O.S. Sorokina ◽  
...  

The results of the development and manufacture of an integrated membrane-free sensor for the control of accurate dilution of liquid samples on the microfluidic chip are presented. The proposed type of devices is intended for direct precise measurements of liquid flow rate in microchannels of laboratories-on-chip, including point-of-care systems. The sensor topology was optimized based on the numerical simulation results and technological requirements. The main characteristic of the developed sensor is the lack of a membrane in the design while maintaining the sensitivity and accuracy of the device at the level of a commercial membrane analogue. The fully biocompatible sensor was manufactured using standard microelectronics and soft lithography technologies. In order to optimize the sensor design, 32 different topologies of the device were tested. The integration of the flow sensors on the chip allows to significantly reduce the dead volume of the hydrodynamic system and to control the amount of liquid entering the individual reservoirs of the microfluidic chip. The sensor occupies an area of (210 x 140) um2 in the channel and is characterized by a relative error of 5% in the flow rate range of 100-1000 ul/min. microfluidics, lab-on-chip, calorimetric flow sensor, thermoresistive sensor, numerical simulation, hydrodynamics, complementary metal-oxide-semiconductor, microtechnologies Devices were made at the BMSTU Nanofabrication Facility (FMN Laboratory, FMNS REC, ID 74300).


Author(s):  
V. Ryzhkov ◽  
M. Andronik ◽  
V. Echeistov ◽  
Z. Issabayeva ◽  
O. Sorokina ◽  
...  

An integrated membrane-free sensor for precise measurements of fluid flow rate in microchannels of laboratories-on- chip has been developed. The sensor allows to measure flow on microfluidic chip in real time and is designed for liquid samples precise dilution control on the microfluidic chip. Fabrication technology of the microfluidic chip with built-in flow sensors as well as results of experimental comparison of developed sensor with a commercial flowmeter are presented.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012048
Author(s):  
M N Afnan Uda ◽  
U Hashim ◽  
M N A Uda ◽  
N A Parmin ◽  
V Thivina

Abstract Microfluidic delivers miniaturized fluidic networks for processing liquids in the microliter range. In the recent years, lab-on-chip (LOC) is become a main tool for point-of-care (POC) diagnostic especially in the medical field. In this paper, we presented a design and fabrication on multi disease analysis using single chip via delivery of fluid with the multiple transducers is the pathway of multi-channel microfluidic based LOC’s. 3 in 1 nano biosensor kit was attached with the microfluidic to produce nano-biolab-on-chip (NBLOC). The multi channels microfluidic chip was designed including the micro channels, one inlet, three outlet and sensor contact area. The microfluidic chip was designed to include multiplex detection for pathogen that consists of multiple channels of simultaneous results. The LOC system was designed using Design Spark Mechanical software and PDMS was used as a medium of the microfluidic. The microfluidic mold and PDMS microfluidic morphological properties have been characterized by using low power microscope (LPM), high power microscope (HPM) and surface profiler. The LOC system physical was experimental by dropping food coloring through the inlet and collecting at the sensor contact area outlet.


Author(s):  
Marco Rasponi ◽  
Monica Soncini ◽  
Franco Maria Montevecchi ◽  
Alberto Redaelli

A prototype of a Lab-on-Chip (LoC) device manufactured by ST Microelectronics Inc., which is intended to be a diagnostic platform for DNA analysis, has been analyzed. In particular, the dynamics of the filling process was evaluated by means of a 3-D numerical model. Measurements of wettability were also conducted by evaluating the surface tension of the examined liquids and their contact angles on the solid substrates. Two different filling conditions were simulated: pure capillarity and a pressure of 1.5 kPa applied to the inlet. Results in terms of filling time, fluids velocities and percentage of air entrapped in the channels were analyzed. The numerical model revealed the presence of 3.4% of air in the channels (localized in the corner regions), when the pressure of 1.5 kPa was applied. In case of zero pressure, the top corners of the central channel got completely wetted, thus reducing the amount of air to 2.7%. The results showed that capillary forces are dominant during the filling of channels with dimensions smaller than 200 μm. General parameters used to have an insight into the kind of forces leading a fluid-dynamic process are the Reynolds (Re) and Capillary (Ca) numbers, ratios between inertial and viscous forces, and viscous and surface forces, respectively. The computed maximum values in our simulations were Re = 60 and Ca = 0.018, showing the predominance of surface forces on both viscous and, indirectly, inertial ones.


Sign in / Sign up

Export Citation Format

Share Document