scholarly journals An Artificial Neural Network Model for Highway Accident Prediction: A Case Study of Erzurum, Turkey

2015 ◽  
Vol 27 (3) ◽  
pp. 217-225 ◽  
Author(s):  
Muhammed Yasin Çodur ◽  
Ahmet Tortum

This study presents an accident prediction model of Erzurum’s Highways in Turkey using artificial neural network (ANN) approaches. There are many ANN models for predicting the number of accidents on highways that were developed using 8 years with 7,780 complete accident reports of historical data (2005-2012). The best ANN model was chosen for this task and the model parameters included years, highway sections, section length (km), annual average daily traffic (AADT), the degree of horizontal curvature, the degree of vertical curvature, traffic accidents with heavy vehicles (percentage), and traffic accidents that occurred in summer (percentage). In the ANN model development, the sigmoid activation function was employed with Levenberg-Marquardt algorithm. The performance of the developed ANN model was evaluated by mean square error (MSE), the root mean square error (RMSE), and the coefficient of determination (R2). The model results indicate that the degree of vertical curvature is the most important parameter that affects the number of accidents on highways.

2020 ◽  
Vol 69 (11-12) ◽  
pp. 595-602
Author(s):  
Hichem Tahraoui ◽  
Abd Elmouneïm Belhadj ◽  
Adhya Eddine Hamitouche

The region of Médéa (Algeria) located in an agricultural site requires a large amount of drinking water. For this purpose, the water analyses in question are imperative. To examine the evolution of the drinking water quality in this region, firstly, an experimental protocol was done in order to obtain a dataset by taking into account several physicochemical parameters. Secondly, the obtained data set was divided into two parts to form the artificial neural network, where 70 % of the data set was used for training, and the remaining 30 % was also divided into two equal parts: one for testing and the other for validation of the model. The intelligent model obtained was evaluated as a function of the correlation coefficient nearest to 1 and lowest mean square error (RMSE). A set of 84 data points were used in this study. Eighteen parameters in the input layer, five neurons in the hidden layer, and one parameter in the output layer were used for the ANN modelling. Levenberg Marquardt learning (LM) algorithm, logarithmic sigmoid, and linear transfer function were used, respectively, for the hidden and the output layers. The results obtained during the present study showed a correlation coefficient of <i>R</i> = 0.99276 with root mean square error RMSE = 11.52613 mg dm<sup>–3</sup>. These results show that obtained ANN model gave far better and more significant results. It is obviously more accurate since its relative error is small with a correlation coefficient close to unity. Finally, it can be concluded that obtained model can effectively predict the rate of soluble bicarbonate in drinking water in the Médéa region.


2019 ◽  
Vol 8 (4) ◽  
pp. 6177-6181

Hydropower scheme would experience issue relating to high flooding especially at low lying area due to extreme raining season. To mitigate the potential risk of flooding and improve the hydroelectric regulation, a flow prediction is needed to estimate the discharge of water flow at hydroelectric reservoirs. Artificial Neural Network (ANN) model were used in this research to forecast the water discharge of hydroelectric station. The discharge flow predictions were made based on fore bay elevation, inflow and the discharge of water flow. Elman Neural Network architecture was selected as ANN method and its performance was evaluated by considering the number of hidden nodes and training methods. ANN model performance were assessed using performance metrics such as Root Mean Square Error (RMSE), Mean Square Error (MSE), Mean Absolute Error (MAE) and Sum Square Error (SSE). The result indicate that ANN model showed the best applicability for discharge prediction with small performance metric.


2018 ◽  
Vol 14 (3) ◽  
pp. 239-251 ◽  
Author(s):  
Anupama Thapliyal ◽  
Roop Krishen Khar ◽  
Amrish Chandra

Background: In this study, computational Artificial Neural Network (ANN) model is applied for optimisation and evaluation of silver nanoparticles (AgNPs) size in the bionanocomposite matrix. The primary purpose of this study is used a feed-forward ANN model to create a connection between the output as the size of Ag–NPs, with four inputs variables, including AgNO3 concentration, the weight percentage of starch, Bentonite amount and Gallic acid concentration. Method: Silver nanoparticles were synthesised via biogenic green reduction method. The fast Levenberg– Marquardt (LM) backpropagation algorithm applied for the training of ANN model in this research. The optimised ANN is a multilayer perceptron (MLP) which is a kind of feed forward (4- 10-1) network has an input layer with 4 nodes, hidden layers with 10 neurones, and an output layer with 1 node found a fitness function. Results: The output results of developed computational ANN model were compared to its predictive values of the size of silver nanoparticles regarding two statistical parameters, the coefficient of determination (R2) and mean square error (MSE) of data set. It observed that ANN predicted values are close to the actual values and well fitted to the data. The mean square error(MSE) is 0.03, and a regression is about 1. Conclusion: AgNO3 concentration has the most likely factor affecting the size of silver nanoparticles (Ag–NPs) and this makes possible to develop a green reduction method for the preparation of silver nanoparticles. This study confirms that employing ANN method with LM feed forward (4-10-1) network is a useful tool with cost-effective for predicting the results of analysis and modelling of the chemical reactions.


2020 ◽  
Vol 38 (2A) ◽  
pp. 255-264
Author(s):  
Hanan A. R. Akkar ◽  
Sameem A. Salman

Computer vision and image processing are extremely necessary for medical pictures analysis. During this paper, a method of Bio-inspired Artificial Intelligent (AI) optimization supported by an artificial neural network (ANN) has been widely used to detect pictures of skin carcinoma. A Moth Flame Optimization (MFO) is utilized to educate the artificial neural network (ANN). A different feature is an extract to train the classifier. The comparison has been formed with the projected sample and two Artificial Intelligent optimizations, primarily based on classifier especially with, ANN-ACO (ANN training with Ant Colony Optimization (ACO)) and ANN-PSO (training ANN with Particle Swarm Optimization (PSO)). The results were assessed using a variety of overall performance measurements to measure indicators such as Average Rate of Detection (ARD), Average Mean Square error (AMSTR) obtained from training, Average Mean Square error (AMSTE) obtained for testing the trained network, the Average Effective Processing Time (AEPT) in seconds, and the Average Effective Iteration Number (AEIN). Experimental results clearly show the superiority of the proposed (ANN-MFO) model with different features.


2019 ◽  
Vol 269 ◽  
pp. 04004
Author(s):  
Fuad Mahfudianto ◽  
Eakkachai Warinsiriruk ◽  
Sutep Joy-A-Ka

A method for optimizing monitoring by using Artificial Neural Network (ANN) technique was proposed based on instability of arc voltage signal and welding current signal of solid wire electrode (GMAW). This technique is not only for effective process modeling, but also to illustrate the correlation between the input and output parameters responses. The algorithms of monitoring were developed in time domain by carrying out the Moving Average (M.A) and Root Mean Square (RMS) based on the welding experiment parameters such as travel speed, thickness of specimen, feeding speed, and wire electrode diameter to detect and estimate with a satisfactory sample size. Experiment data was divided into three subsets: train (70%), validation (15%), and test (15%). Error back-propagation of Levenberg-Marquardt algorithm was used to train for this algorithm. The proposed algorithms on this paper were used to estimate the variety the Contact Tip to Work Distance (CTWD) through Mean Square Error (MSE). Based on the results, the algorithms have shown that be able to detect changes in CTWD automatically and real time with takes 0.147 seconds (MSE 0.0087).


Author(s):  
Madhukar A. Dabhade ◽  
M. B. Saidutta ◽  
D. V. R. Murthy

Presence of phenol and phenolic compounds in various wastewaters and its harmful effects has led to the use of different treatment methods. Work on biological methods shows the use of different microorganisms and different bioreactors so as to improve the removal efficiency economically. The present work deals with the use of N. hydrocarbonoxydans (NCIM 2386), an actinomycetes, for the degradation of phenol. N. hydrocarbonoxydans was immobilized on GAC and used in a spouted bed contactor for effective contact of microorganisms and the substrate. The contactor performance was studied by varying flow rates, influent concentrations and the solids loading in the contactor. The effect of these variables on phenol degradation was investigated and modeling study was carried out using the artificial neural network (ANN). A feed forward neural network with back propagation was used for the model development. The experiments were planned as per the face centered cube design (FCCD) and used for training of the model, whereas data from four other experimental runs were used for testing and validation of the model. The network was optimized for the number of neurons based on the mean square error. The ANN model with three layers with three input neurons, eight neurons in hidden layers and one output neuron was found to predict effectively the effluent concentration for the given operating conditions in the spouted bed contactor. The mean square error was found to be 9.318e-12 for this ANN model. Also the experimental data was used to develop second order nonlinear empirical model obtained using multiple regression (MR) and the results compared with ANN using correlation coefficient (R2), average absolute error (AAE) and root mean square error (RMSE). Results show that R2, AAE and RMSE values of MR model were 0.9363, 2.085 % and 2.338 % respectively, while in case of ANN model these values were 0.9995, 0.59 % and 1.263 % respectively. This shows that ANN model prediction is better than multiple regression model prediction.


2021 ◽  
Vol 11 (4) ◽  
pp. 1885-1904
Author(s):  
Anietie Ndarake Okon ◽  
Idongesit Bassey Ansa

AbstractCalculation of water influx into petroleum reservoir is a tedious evaluation with significant reservoir engineering applications. The classical approach developed by van Everdingen–Hurst (vEH) based on diffusivity equation solution had been the fulcrum for water influx calculation in both finite and infinite-acting aquifers. The vEH model for edge-water drive reservoirs was modified by Allard and Chen for bottom-water drive reservoirs. Regrettably, these models solution variables: dimensionless influx ($$W_{{{\text{eD}}}}$$ W eD ) and dimensionless pressure ($$P_{D}$$ P D ) were presented in tabular form. In most cases, table look-up and interpolation between time entries are necessary to determine these variables, which makes the vEH approach tedious for water influx estimation. In this study, artificial neural network (ANN) models to predict the reservoir-aquifer variables $$W_{{{\text{eD}}}}$$ W eD and $$P_{D}$$ P D was developed based on the vEH datasets for the edge- and bottom-water finite and infinite-acting aquifers. The overall performance of the developed ANN models correlation coefficients (R) was 0.99983 and 0.99978 for the edge- and bottom-water finite aquifer, while edge- and bottom-water infinite-acting aquifer was 0.99992 and 0.99997, respectively. With new datasets, the generalization capacities of the developed models were evaluated using statistical tools: coefficient of determination (R2), R, mean square error (MSE), root-mean-square error (RMSE) and absolute average relative error (AARE). Comparing the developed finite aquifer models predicted $$W_{{{\text{eD}}}}$$ W eD with Lagrangian interpolation approach resulted in R2, R, MSE, RMSE and AARE of 0.9984, 0.9992, 0.3496, 0.5913 and 0.2414 for edge-water drive and 0.9993, 0.9996, 0.1863, 0.4316 and 0.2215 for bottom-water drive. Also, infinite-acting aquifer models (Model-1) resulted in R2, R, MSE, RMSE and AARE of 0.9999, 0.9999, 0.5447, 0.7380 and 0.2329 for edge-water drive, while bottom-water drive had 0.9999, 0.9999, 0.2299, 0.4795 and 0.1282. Again, the edge-water infinite-acting model predicted $$W_{{{\text{eD}}}}$$ W eD and Edwardson et al. polynomial estimated $$W_{eD}$$ W eD resulted in the R2 value of 0.9996, R of 0.9998, MSE of 4.740 × 10–4, RMSE of 0.0218 and AARE of 0.0147. Furthermore, the developed ANN models generalization performance was compared with some models for estimating $$P_{D}$$ P D . The results obtained for finite aquifer model showed the statistical measures: R2, R, MSE, RMSE and AARE of 0.9985, 0.9993, 0.0125, 0.1117 and 0.0678 with Chatas model and 0.9863, 0.9931, 0.1411, 0.3756 and 0.2310 with Fanchi equation. The infinite-acting aquifer model had 0.9999, 0.9999, 0.1750, 0.0133 and 7.333 × 10–3 with Edwardson et al. polynomial, then 0.9865, 09,933, 0.0143, 0.1194 and 0.0831 with Lee model and 0.9991, 0.9996, 1.079 × 10–3, 0.0328 and 0.0282 with Fanchi model. Therefore, the developed ANN models can predict $$W_{{{\text{eD}}}}$$ W eD and $$P_{D}$$ P D for the various aquifer sizes provided by vEH datasets for water influx calculation.


2016 ◽  
Vol 2 (11) ◽  
pp. 555-567 ◽  
Author(s):  
Samaneh Khademikia ◽  
Ali Haghizadeh ◽  
Hatam Godini ◽  
Ghodratollah Shams Khorramabadi

In this study a hybrid estimation model ANN-COA developed to provide an accurate prediction of a Wastewater Treatment Plant (WWTP). An effective strategy for detection of some output parameters tested on a hardware setup in WWTP. This model is designed utilizing Artificial Neural Network (ANN) and Cuckoo Optimization Algorithm (COA) to improve model performances; which is trained by a historical set of data collected during a 6 months operation. ANN-COA based on the difference between the measured and simulated values, allowed a quick revealing of the faults. The method could obtain the fault detection and used in solving continuous and discrete optimization problems, successfully. After constructing and modelling the method, selected performance indices including coefficient of Regression, Mean-Square Error, Root-Mean-Square Error and Aggregated Measure used to compare the obtained results. This analysis revealed that the hybrid ANN-COA model offers a higher degree of accuracy for predicting and control the WWTP.


2021 ◽  
Vol 29 (3) ◽  
pp. 368-380
Author(s):  
Cristina Ghinea ◽  
Petronela Cozma ◽  
Maria Gavrilescu

Neural network time series (NNTS) tool was used to predict municipal solid waste composition in Iasi, Romania. The nonlinear input output (NIO) time series model and nonlinear autoregressive model with external (exogenous) input (NARX) included in this tool were selected. The coefficient of determination (R2) and root mean square error (RMSE) were chosen for evaluation. By applying NIO, the optimum model is 4-11-6 artificial neural network (ANN, R2 = 0.929) in the case of testing as for the validation, with all 0.849 and 0.885, respectively. Applying NARX, the suitable model became 4-13-6 ANN model, with R2 = 0.999 for training, 0.879 for testing, and 0.931, respectively 0.944 for validation and all. The resulted RMSE is zero for training and 0.0109 for validation in the case of this model which had 4 inputs, 13 neurons and 6 outputs. The four input variables were: number of residents, population aged 15–59 years, urban life expectancy, total municipal solid waste (ton/year). The suitable ANN model revealed the lowest root mean square error and the highest coefficient of determination. Results indicate that NNTS tool is a complex instrument, NARX is more accurate than NIO model, and can be used and applied easily.


2019 ◽  
Vol 11 (1) ◽  
pp. 25 ◽  
Author(s):  
Osama Dorgham ◽  
Ibrahim Al-Mherat ◽  
Jawdat Al-Shaer ◽  
Sulieman Bani-Ahmad ◽  
Stephen Laycock

Bioelectric signals are used to measure electrical potential, but there are different types of signals. The electromyography (EMG) is a type of bioelectric signal used to monitor and recode the electrical activity of the muscles. The current work aims to model and reproduce surface EMG (SEMG) signals using an artificial neural network. Such research can aid studies into life enhancement for those suffering from damage or disease affecting their nervous system. The SEMG signal is collected from the surface above the bicep muscle through dynamic (concentric and eccentric) contraction with various loads. In this paper, we use time domain features to analyze the relationship between the amplitude of SEMG signals and the load. We extract some features (e.g., mean absolute value, root mean square, variance and standard deviation) from the collected SEMG signals to estimate the bicep’ muscle force for the various loads. Further, we use the R-squared value to depict the correlation between the SEMG amplitude and the muscle loads by linear fitting. The best performance the ANN model with 60 hidden neurons for three loads used (3 kg, 5 kg and 7 kg) has given a mean square error of 1.145, 1.3659 and 1.4238, respectively. The R-squared observed are 0.9993, 0.99999 and 0.99999 for predicting (reproduction step) of smooth SEMG signals.


Sign in / Sign up

Export Citation Format

Share Document