scholarly journals Start-up Lost Time and its Effect on Signalized Intersections in Turkey

2017 ◽  
Vol 29 (3) ◽  
pp. 321-329 ◽  
Author(s):  
S. Pelin Çalışkanelli ◽  
Figen Coşkun Atasever ◽  
Serhan Tanyel

Start-up lost time is an important parameter in performance of signalized intersections which may in turn depict the effect of behaviour of different drivers for different countries. In this study the parameters affecting the startup lost time in Turkey will be defined and a model will be established to present the relationship between start-up lost time, saturation flow as well as start response time with the behaviour of Turkish drivers. For this purpose, observations were carried out at eight intersections in Turkey. Analyses have shown that saturation headways decrease with the increase in time in start response since the drivers in the 2nd and higher rows of a queue have a longer time to get prepared to discharge. Results also indicated that start-up lost time increases rapidly as cycle time increases, and lower start-up lost time values can be observed in left or right turning lanes.

Author(s):  
David A. Noyce ◽  
Daniel B. Fambro ◽  
Kent C. Kacir

At least four variations of the permitted indication in protected/permitted left-turn (PPLT) control have been developed in an attempt to improve the level of driver understanding and safety. These variations replace the green ball permitted indication with a flashing red ball, a flashing yellow ball, a flashing red arrow, or a flashing yellow arrow indication. In addition, the Manual on Uniform Traffic Control Devices allows several PPLT signal display arrangements. The variability in indication and arrangement has led to a myriad of PPLT displays throughout the United States. The level of driver understanding related to each PPLT display type, and the associated impact on traffic operations and safety, has not been quantified. A study was conducted to evaluate the operational characteristics associated with different PPLT signal displays. Specifically, the study quantified saturation flow rate, start-up lost time, response time, and follow-up headway associated with selected PPLT displays. No differences in saturation flow rate and start-up lost time were found due to the type of PPLT signal display. Saturation flow rates ranged from 1,770 to 2,400 vehicles per hour of green per lane and were related to differences in driver behavior between geographic locations. The variation in start-up lost time and response time between locations was primarily related to differences in phase sequence. The flashing red permitted indications were associated with the longest follow-up headway times, since drivers are required to stop before turning left with a flashing red permitted indication. The shortest follow-up headway was associated with the five-section cluster display using a green ball indication.


2003 ◽  
Vol 1852 (1) ◽  
pp. 105-113 ◽  
Author(s):  
Winai Raksuntorn ◽  
Sarosh I. Khan

A review of the literature shows that capacity and saturation flow rate for on-street bicycle lanes at intersections have not been measured on the basis of bicycle discharge at intersections at the start of the green phase. The Highway Capacity Manual 2000 recommends a saturation flow rate of 2,000 bicycles per hour for a bicycle lane at a signalized intersection. However, this recommendation is not based on field studies at the intersection and is not a function of the width of the bicycle lane. A revised estimate is provided of saturation flow rate, and an estimate is provided of start-up lost time for bicycles based on data collected at the stop line of signalized intersections. In addition, the lateral stopped distance of automobiles from bicycle lanes, the lateral stopped distance of bicycles from adjacent lanes, and the lateral and longitudinal stopped distance between pairs of bicycles at a signalized intersections are presented. Bicycles may form more than one queue within a bicycle lane at the stop line. Since bicycles maintain a certain distance from the adjacent lane and the curb, the number of queues formed varies based on the width of the bicycle lane. Therefore, the saturation flow rate for a bicycle lane depends on the number of queues or the width of the bicycle lane. The saturation flow rates for bicycle lanes of varying widths are proposed on the basis of the lateral stopped distance of bicycles. Empirical evidence from intersections in Colorado and California is used to propose a new method to estimate the capacity for a bicycle lane.


2000 ◽  
Vol 1710 (1) ◽  
pp. 199-204 ◽  
Author(s):  
Xuewen Le ◽  
Jian Lu ◽  
Edward A. Mierzejewski ◽  
Yanhu Zhou

The capacity analysis procedure for signalized intersections included in the Highway Capacity Manual (HCM) needs to consider the area type of a given intersection. The area-type adjustment factor used in the procedure is based on conclusions from a limited number of studies. In addition, the procedure for using an area-type adjustment factor is not well defined in the HCM. A study undertaken in central Florida to study the effects of four different area types on the capacity of signalized intersections is summarized. These four area types include recreational, business, residential, and shopping. Study results indicated that differences in saturation headways among different area types were significant. The saturation headways observed in recreational areas were significantly higher than those in other areas for both left-turn and through movements. The through-movement saturation headways obtained in residential, shopping, and business areas were not significantly different. This study resulted in a new area-type adjustment factor of 0.92 for recreational areas, whereas the factor is 1.00 for other areas. Results in this study also indicated that the differences in start-up lost time among different area types were not significantly different. In addition, according to the results of the analysis, 75 percent of the yellow interval in undersaturated conditions and 35 percent of the yellow interval in oversaturated conditions were found to be unused and considered clearance lost time.


Transport ◽  
2016 ◽  
Vol 33 (2) ◽  
pp. 380-388 ◽  
Author(s):  
Pelin Çalişkanelli ◽  
Serhan Tanyel

It is generally accepted that, behavioural variables may show differences in different countries, and sometimes in different regions depending on cultural and other socio-economic factors. In literature, several researchers have emphasized that performance of signalized intersections is highly related with drivers’ behaviour. However, only a few parameters can be used to reflect drivers’ behaviour in performance analysis. Start response time is used as a key parameter in calibration of analytical and simulation models. In this study, a detailed analysis is conducted on the variability of start response time with respect to parameters like those that manoeuvre type, cycle time, gender of drivers’, etc. by using data obtained from signalized intersections in İzmir, Turkey. Analysis showed that left and right turning drivers have slightly shorter start response times than all through passing vehicles. In addition, the effect of start response time on base saturation flow is discussed.


2001 ◽  
Vol 18 ◽  
pp. 943-947 ◽  
Author(s):  
Shigenori SHIKATA ◽  
Masahiko KATAKURA ◽  
Takashi OGUCHI ◽  
Yoshiyuki KAWAI

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yi Zhao ◽  
Wenbo Zhang ◽  
Jian Lu ◽  
Wenjun Zhang ◽  
Yongfeng Ma

This study aimed to calibrate saturation flow rate (SFR) and start-up lost time (SLT) when developing signal timing. In current commonly used methods, SFR for one given lane is usually calibrated from many subjective adjustment factors and a fixed result. SLT is calculated based on the fixed SFR, which prevents local applications in China. Considering the importance of traffic behavior (headway) in determining SFR and SLT, this study started from headway distribution and attempted to specify the relationships between headway and vehicle position directly. A common intersection in Nanjing, China, was selected to implement field study and data from 920 queues was collected. Headway distribution was explored and the 78th percentile of headway at each position was selected to build model. Based on the developed relationships, SFR and SLT were calibrated. The results showed that SFR and SLT were correlated with queue length. Moreover, the results showed that it was difficult to reach saturated state even with a long queue length. This paper provides a new perspective on calibrating important parameters in signal timing, which will be useful for traffic agencies to complete signal timing by making the process simpler.


1998 ◽  
Vol 1646 (1) ◽  
pp. 96-105 ◽  
Author(s):  
James A. Bonneson ◽  
Carroll J. Messer

Described in this paper are the development, calibration, and application of models that collectively can be used to predict the saturation flow rate and start-up lost time of through movements at signalized interchange ramp terminals and other closely spaced intersections. These models were calibrated with data collected at 12 interchanges. It is concluded that saturation flow rate decreases as the distance to the downstream queue decreases. This queue is formed by the signal at a downstream intersection. Saturation flow rate increases with traffic pressure, as quantified by traffic volume per cycle per lane. It is recommended that an ideal saturation flow rate of 2,000 passenger-car units per hour of green per lane be used for signalized ramp terminals and other high-volume intersections in urban areas. The data collected for this research indicate that start-up lost time increases with saturation flow rate.


2021 ◽  
Vol 49 (4) ◽  
pp. 359-368
Author(s):  
Nawaf Alshabibi

Cellphone usage has a significant impact on signalized intersections' capacity and level of service. This study investigated the impact of cellphone usage on signalized intersection capacity and level of service in Dammam Metropolitan Area, Saudi Arabia. The data included 183 useful cycles and 2407 start-up lost time and average saturation headway values at cycles with cellphone usage and cycles without cellphone usage at 24 signalized intersections. The main hypothesis of the study is that cellphone usage increases the start-up lost time at signalized intersection capacity. The secondary hypothesis is that cellphone usage increases the average saturation headway at signalized intersections. Normal distribution and z-test were conducted to assess whether there is a significant increase in average saturation headway and start-up lost time. The study found a significant increase in start-up lost time of about 0.7 seconds but found no significant increase in average saturation headway due to cellphone usage. Also, start-up lost time increases as vehicles of cellphone users get closer to the stop line of the signalized intersections. Thus, cellphone usage decreases the progression of 13 vehicles per hour due to a reduction in effective green time, increases total delay, and deteriorates the level of service. The study can assist transportation and traffic officials to optimize signal operation to mitigate the impact of cellphone usage and improve urban transportation.


Sign in / Sign up

Export Citation Format

Share Document