scholarly journals Estimation of Saturation Flow Rate and Start-Up Lost Time for Signal Timing Based on Headway Distribution

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yi Zhao ◽  
Wenbo Zhang ◽  
Jian Lu ◽  
Wenjun Zhang ◽  
Yongfeng Ma

This study aimed to calibrate saturation flow rate (SFR) and start-up lost time (SLT) when developing signal timing. In current commonly used methods, SFR for one given lane is usually calibrated from many subjective adjustment factors and a fixed result. SLT is calculated based on the fixed SFR, which prevents local applications in China. Considering the importance of traffic behavior (headway) in determining SFR and SLT, this study started from headway distribution and attempted to specify the relationships between headway and vehicle position directly. A common intersection in Nanjing, China, was selected to implement field study and data from 920 queues was collected. Headway distribution was explored and the 78th percentile of headway at each position was selected to build model. Based on the developed relationships, SFR and SLT were calibrated. The results showed that SFR and SLT were correlated with queue length. Moreover, the results showed that it was difficult to reach saturated state even with a long queue length. This paper provides a new perspective on calibrating important parameters in signal timing, which will be useful for traffic agencies to complete signal timing by making the process simpler.

Author(s):  
David A. Noyce ◽  
Daniel B. Fambro ◽  
Kent C. Kacir

At least four variations of the permitted indication in protected/permitted left-turn (PPLT) control have been developed in an attempt to improve the level of driver understanding and safety. These variations replace the green ball permitted indication with a flashing red ball, a flashing yellow ball, a flashing red arrow, or a flashing yellow arrow indication. In addition, the Manual on Uniform Traffic Control Devices allows several PPLT signal display arrangements. The variability in indication and arrangement has led to a myriad of PPLT displays throughout the United States. The level of driver understanding related to each PPLT display type, and the associated impact on traffic operations and safety, has not been quantified. A study was conducted to evaluate the operational characteristics associated with different PPLT signal displays. Specifically, the study quantified saturation flow rate, start-up lost time, response time, and follow-up headway associated with selected PPLT displays. No differences in saturation flow rate and start-up lost time were found due to the type of PPLT signal display. Saturation flow rates ranged from 1,770 to 2,400 vehicles per hour of green per lane and were related to differences in driver behavior between geographic locations. The variation in start-up lost time and response time between locations was primarily related to differences in phase sequence. The flashing red permitted indications were associated with the longest follow-up headway times, since drivers are required to stop before turning left with a flashing red permitted indication. The shortest follow-up headway was associated with the five-section cluster display using a green ball indication.


2003 ◽  
Vol 1852 (1) ◽  
pp. 105-113 ◽  
Author(s):  
Winai Raksuntorn ◽  
Sarosh I. Khan

A review of the literature shows that capacity and saturation flow rate for on-street bicycle lanes at intersections have not been measured on the basis of bicycle discharge at intersections at the start of the green phase. The Highway Capacity Manual 2000 recommends a saturation flow rate of 2,000 bicycles per hour for a bicycle lane at a signalized intersection. However, this recommendation is not based on field studies at the intersection and is not a function of the width of the bicycle lane. A revised estimate is provided of saturation flow rate, and an estimate is provided of start-up lost time for bicycles based on data collected at the stop line of signalized intersections. In addition, the lateral stopped distance of automobiles from bicycle lanes, the lateral stopped distance of bicycles from adjacent lanes, and the lateral and longitudinal stopped distance between pairs of bicycles at a signalized intersections are presented. Bicycles may form more than one queue within a bicycle lane at the stop line. Since bicycles maintain a certain distance from the adjacent lane and the curb, the number of queues formed varies based on the width of the bicycle lane. Therefore, the saturation flow rate for a bicycle lane depends on the number of queues or the width of the bicycle lane. The saturation flow rates for bicycle lanes of varying widths are proposed on the basis of the lateral stopped distance of bicycles. Empirical evidence from intersections in Colorado and California is used to propose a new method to estimate the capacity for a bicycle lane.


1998 ◽  
Vol 1646 (1) ◽  
pp. 96-105 ◽  
Author(s):  
James A. Bonneson ◽  
Carroll J. Messer

Described in this paper are the development, calibration, and application of models that collectively can be used to predict the saturation flow rate and start-up lost time of through movements at signalized interchange ramp terminals and other closely spaced intersections. These models were calibrated with data collected at 12 interchanges. It is concluded that saturation flow rate decreases as the distance to the downstream queue decreases. This queue is formed by the signal at a downstream intersection. Saturation flow rate increases with traffic pressure, as quantified by traffic volume per cycle per lane. It is recommended that an ideal saturation flow rate of 2,000 passenger-car units per hour of green per lane be used for signalized ramp terminals and other high-volume intersections in urban areas. The data collected for this research indicate that start-up lost time increases with saturation flow rate.


Author(s):  
A. M. Tahsin Emtenan ◽  
Christopher M. Day

During oversaturated conditions, common objectives of signal timing are to maximize vehicle throughput and manage queues. A common response to increases in vehicle volumes is to increase the cycle length. Because the clearance intervals are displayed less frequently with longer cycle lengths and fewer cycles, more of the total time is used for green indications, which implies that the signal timing is more efficient. However, previous studies have shown that throughput reaches a peak at a moderate cycle length and extending the cycle length beyond this actually decreases the total throughput. Part of the reason for this is that spillback caused by the turning traffic may cause starvation of the through lanes resulting in a reduction of the saturation flow rate within each lane. Gaps created by the turning traffic after a lane change may also reduce the saturation flow rate. There is a relationship between the proportions of turning traffic, the storage length of turning lanes, and the total throughput that can be achieved on an approach for a given cycle length and green time. This study seeks to explore this relationship to yield better signal timing strategies for oversaturated operations. A microsimulation model of an oversaturated left-turn movement with varying storage lengths and turning proportions is used to determine these relationships and establish a mathematical model of throughput as a function of the duration of green, storage length, and turning proportion. The model outcomes are compared against real-world data.


2020 ◽  
Vol 12 (11) ◽  
pp. 4485
Author(s):  
Abdelrahman Abuhijleh ◽  
Charitha Dias ◽  
Wael Alhajyaseen ◽  
Deepti Muley

The Saturation Flow Rate (SFR) is a primary measure that can be used when estimating intersection capacity. Further, the efficiency of signal control parameters also depends on the accuracy of assumed SFR values. Driver behavior, type of movement, vehicle type, intersection layout, and other factors may have a significant impact on the saturation flow rate. Thus, it is expected that driving environments that have heterogeneous driver populations with different driving habits and cultures may have different SFRs. In practice, the proposed SFRs based on US standards (Highway Capacity Manual, 2016) have been adopted in the State of Qatar without validation or calibration to consider the local road environment and the characteristics of the driving population. This study aims to empirically analyze the saturation flow rates for exclusive left-turn lanes and shared left- and U-turn lanes at two signalized intersections in Doha city, while considering the effects of heavy vehicles and U-turn maneuvers. Empirical observations revealed that the average base SFR, i.e., when the influences from heavy vehicles and U-turns were excluded, could vary approximately from 1800 vehicles per hour per lane (vphpl) to 2100 vphpl for exclusive left-turning lanes and approximately from 1800 vphpl to 1900 vphpl for shared left- and U-turning lanes. Furthermore, this study proposed different adjustment factors for heavy vehicle and U-turn percentages which can be applied in practice in designing signalized intersections, particularly in the State of Qatar.


2000 ◽  
Vol 1710 (1) ◽  
pp. 239-245 ◽  
Author(s):  
Yanhu Zhou ◽  
Jian John Lu ◽  
Edward A. Mierzejewski ◽  
Xuewen Le

In the Highway Capacity Manual (HCM), driver population factors are included to adjust for the impact of nonlocal drivers on freeway capacity. There are no such factors in the HCM to account for the possible change of capacity at signalized intersections caused by unfamiliar drivers in the traffic stream. The results obtained from a research study to develop driver population adjustment factors for capacity analysis of signalized intersections are summarized. Detailed procedures for quantifying driver population adjustment factors are presented. The factors were derived on the basis of data collected in Hillsborough, Pinellas, Orange, and Osceola counties in Florida. Study results indicated that nonlocal drivers had a significant impact on the saturation flow rate. When a signalized intersection was identified with a high level of nonlocal drivers, the saturation flow rate as well as the capacity could be reduced by 19 percent, which corresponded to a driver population factor as low as 0.81.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Yi Zhao ◽  
Yongfeng Ma ◽  
Jian Lu ◽  
Yankai Zong ◽  
Qian Wan

The aim of this paper is to study the headway distribution of queued vehicles (less than 16 vehicles) at signalized intersections. Existing studies usually take the average statistics of headway at any queuing place. When different percentile points of statistical data are assigned to headway, the passing rate (the rate of all queued vehicles passing the stop line) under the ideal signal timing scheme varies. When selecting the mean value, the passing rate of a queue of fewer than 16 vehicles is no more than 65%. When selecting 75% as the percentile, the passing rate is up to 94%. The queue length also decides the assigned percentile of headway to ensure the passing rate reaches a certain level. The value assignation of headway directly affects lane capacity and start-up loss time. This paper provides a new perspective on parameter calibration and will make the signal timing algorithm method more effective.


Author(s):  
Honglong Li ◽  
Panos D. Prevedouros

The analyses conducted in this research were based on three methodologies for the field measurement of saturation headways. The first method (M1), the one on which most past studies were based, measured the characteristics of Vehicles 4 to 12 in a standing queue. M2, the method found in the Highway Capacity Manual (HCM), counted all vehicles in a standing queue, regardless of queue length. M3 included arrivals that joined the standing queue as long as vehicles were up to 140 ft from the stop line. This study focused on one approach of a high-design intersection with heavy, random arrivals. The large number of observations and the practically ideal traffic conditions enabled the acquisition of several statistically significant results on saturation flow ( s), start-up lost time (SULT), and start-up response time (SRT): ( a) when long queues are present, the typical field measurement of s based on the first 12 vehicles is an overestimate of s for through vehicles and an underestimate of s for protected left-turning vehicles; ( b) the type of movement had a more dominant role in determining s than the level of saturation (or queue length); ( c) SRT displayed a bigger variation than headways— the left-turning movement had a significantly shorter SRT than the through movement did; and ( d) much higher SULTs were estimated in this study compared with those in the HCM.


Sign in / Sign up

Export Citation Format

Share Document