A Study on the Development of Height Measuring Device for Surveying Instrument using Encoders

Author(s):  
Won Seok Yu ◽  
Dek Kie Tcha ◽  
Jae Myeong Kim ◽  
Yun Soo Choi
Keyword(s):  
Author(s):  
Yuri Kolev ◽  
Атanas Atanasov ◽  
Таnia Pehlivanova

A load profile measuring device takes information about the power consumption without modification of the power lines. Using current transformers, the current is measured in each of the phases and the active power consumed by the user is determined. The developed software for it allows for simultaneous recording at different user selectable timing intervals. The device is designed and tested in two facilities - a School and a Farm.


Author(s):  
Tossenko O.M.

The development of measuring instruments requires a specialist to know the principles of operation of advanced measuring systems. This article describes guidelines for creating a virtual appliance in LabVIEW. LabVIEW (Laboratory Virtual Instrument Engineering Workbench) is a graphical application programming environment used as a standard tool for measuring, analyzing their data, further ma­ naging devices and objects under study. LabVIEW language is not like other programming languages. It does not create a program, but a virtual tool, designed not only for the simulation of certain processes, but also for the management of hardware and the study of real physical objects. The article deals with the task of designing application software for a specific information-measuring device, analyzes the capabilities of the LabVIEW environment for spectral analysis of various signals, outlines the basic principles and techniques of programming within the framework of the LabVIEW graphical environment during the basic stages of development. The procedure for creating a virtual device is described, which allows to evaluate the spectral composition of the signals, presents a graphical code of execution (diagram) to the program and a graphical tool interface of the virtual device. A number of basic elements used to develop the program are described. The simplicity of the graphic designs, the ease of installation on the field of the program, the clarity and readability of the program — all of which makes LabVIEW preferred over other languages of programming. In most cases, the experiment is the only source of reliable information. And the result is achieved much faster than the methods of "pure" theory. The article substantiates the effectiveness of using a development tool that allows to obtain a software product and ensure the fulfillment of all the basic functions of an automated system. Developing a software algorithm for calculating statistical parameters will help engineering students understand the order of determining spectral characteristics and their place in the structure of experimental research.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1572
Author(s):  
Lukas Merker ◽  
Joachim Steigenberger ◽  
Rafael Marangoni ◽  
Carsten Behn

Just as the sense of touch complements vision in various species, several robots could benefit from advanced tactile sensors, in particular when operating under poor visibility. A prominent tactile sense organ, frequently serving as a natural paragon for developing tactile sensors, is the vibrissae of, e.g., rats. Within this study, we present a vibrissa-inspired sensor concept for 3D object scanning and reconstruction to be exemplarily used in mobile robots. The setup consists of a highly flexible rod attached to a 3D force-torque transducer (measuring device). The scanning process is realized by translationally shifting the base of the rod relative to the object. Consequently, the rod sweeps over the object’s surface, undergoing large bending deflections. Then, the support reactions at the base of the rod are evaluated for contact localization. Presenting a method of theoretically generating these support reactions, we provide an important basis for future parameter studies. During scanning, lateral slip of the rod is not actively prevented, in contrast to literature. In this way, we demonstrate the suitability of the sensor for passively dragging it on a mobile robot. Experimental scanning sweeps using an artificial vibrissa (steel wire) of length 50 mm and a glass sphere as a test object with a diameter of 60 mm verify the theoretical results and serve as a proof of concept.


1985 ◽  
Vol 59 (2) ◽  
pp. 199-210
Author(s):  
SALEEM M. R. TAHA ◽  
MAJID A. H. ABDUL-KARIM
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document