scholarly journals PRODUCTION AND MICROSTRUCTURE CHARACTERIZATION OF AA6061 MATRIX ACTIVATED CARBON PARTICULATE REINFORCED COMPOSITE BY FRICTION STIR CASTING METHOD

2014 ◽  
Vol 4 (3) ◽  
pp. 27-32
Author(s):  
Jeevan Singh Bisht ◽  
◽  
Akshay Dvivedi ◽  
Apurbba Kumar Sharma ◽  
◽  
...  

2018 ◽  
Author(s):  
Bhanu Prakash Palampalle ◽  
K Brahmaraju ◽  
K Venkata Subbaiah
Keyword(s):  

2017 ◽  
Vol 25 (3) ◽  
pp. 209-214 ◽  
Author(s):  
G. Venkatachalam ◽  
A. Kumaravel

This paper presents the characterization of A356 composite reinforced with fly ash and basalt ash produced by stir casting method. Aluminium metal matrix composites (AMC) are used in wide variety of applications such as structural, aerospace, marine, automotive etc. Stir casting is cost effective manufacturing process and it is useful to enhance the attractive properties of AMCs. Three sets of hybrid AMC are prepared by varying the weight fraction of the reinforcements (3% basalt + 7% fly ash, 5% basalt + 5% fly, 7% basalt + 3% fly ash). The effect of reinforcements on the mechanical properties of the hybrid composites such as hardness, tensile, compressive and impact strength were studied. The obtained results reveal that tensile, compressive and impact strength was increased when weight fraction of fly ash increased, whereas the hardness increases when weight fraction of the basalt ash increased. Microscopic study reveals the dispersion of the reinforcements in the matrix.


Author(s):  
Apireddi Shiva ◽  
Muralimohan Cheepu ◽  
Venkata Charan Kantumuchu ◽  
K Ravi Kumar ◽  
D Venkateswarlu ◽  
...  

2014 ◽  
Vol 592-594 ◽  
pp. 484-488 ◽  
Author(s):  
Pardeep Sharma ◽  
Dinesh Khanduja ◽  
Satpal Sharma

Aluminium matrix composites (AMCs) having more than one reinforcement (hybrid AMCs) found enlarged use due to better strength, high thermal stability and wear resistance properties and can be a substitute for single reinforced AMCs .The effect of varying ball milled (BM) B4C/Si3N4 particles on the microstructure of as cast AA6082 and mechanical properties of AA6082 alloy hybrid composites produced by combined ball milling and conventional stir casting method have been reported. The combined reinforcement of BM B4C/Si3N4 particles were varied from 0-9 % in a step of 3. The wettability of B4C/Si3N4 into the aluminium melt has been increased by ball milling the boron carbide with silicon nitride powder, so that combined reinforcement of B4C/Si3N4 neither float nor sink in the aluminium melt. The investigated result showed that addition of combined reinforcement of BM B4C/Si3N4 increased Hardness and Ultimate tensile strength at the cost of reduction in percentage elongation.


2010 ◽  
Vol 7 (1) ◽  
pp. 53 ◽  
Author(s):  
V.S. Aigbodion ◽  
S.B. Hassan

 The effect of thermal ageing on the microstructure and properties of 10wt% and 20wt%SiC particulate reinforced Al-Si-Fe matrix composite, produced by double stir casting route, have been studied. The composite samples were solution heat-treated at 500o C for 3 hrs and aged at 100, 200, and 300o C with ageing time between 60 and 660 minutes. The ageing characteristics of these grades of composite were evaluated using hardness values, impact energy, tensile properties and microstructure. The tensile strength, yield strength, hardness values increased as the percentage of silicon carbide increased in the alloy with decreased impact energy in both the as-cast and thermally age-hardened samples. The increases in hardness values and strength during thermal ageing are attributed to the formation of coherent and uniform precipitation in the metal lattice. It was found that both grades of composites showed acceleration in thermal ageing compared to the monolithic alloy. However, the 20wt%SiC reinforced composite showed more acceleration compared to 10wt%SiC reinforced composite. 


2020 ◽  
Vol 10 (1) ◽  
pp. 21-25
Author(s):  
Rakhmawati Farma ◽  
Melda Oktaviandari ◽  
Vepy Asyana

Abstrak. Elektroda merupakan salah satu komponen yang dapat meningkatkan kinerja sel superkapasitor. Pada penelitian ini elektroda karbon berasal dari limbah biomassa pelepah nipah. Persiapan awal dimulai dari proses prakarbonisasi pada suhu 200˚C dan selanjutnya diaktivasi secara kimia menggunakan KOH sebagai aktivator dengan konsentrasi 1M. Serbuk karbon aktif diubah menjadi bentuk monolit menggunakan Hydrolic press dan kemudian diikuti oleh proses karbonisasi pada suhu 650, 700 dan 750˚C, kemudian diaktivasi fisika dengan mengalirkan gas CO2 pada suhu 900˚C. Karakterisasi sifat fisis elektroda karbon menunjukkan bahwa densitas sampel PN650 yang dikarbonisasi pada suhu 650˚C memiliki nilai densitas paling rendah. Karakterisasi struktur mikro menunjukkan bahwa elektroda karbon memiliki struktur semikristalin yang ditandai dengan kehadiran puncak (002) dan (100) pada sudut 2θ sekitar 24˚ dan 43˚. Hasil karakterisasi struktur mikro juga menunjukkan bahwa sampel PN650 memiliki nilai Lc tertinggi yaitu sebesar 7,947 nm. Analisa sifat elektrokimia menunjukkan bahwa sampel PN650 mempunyai nilai kapasitansi terbesar yaitu 223,55 F/g. Dapat disimpulkan bahwa suhu 650˚C merupakan suhu terbaik dalam proses pembuatan elektroda karbon dari pelepah nipah untuk diaplikasikan sebagai elektroda sel superkapasitor.Abstract. The electrode is one of the components that can increase the supercapacitor cell performance. In this research, the carbon electrode derives from waste of palm midrib biomass. Initial preparation was started from the pre carbonization process at 200˚C and then was chemically activated using KOH as an activator with a concentration of 1M. The activated carbon powder was converted into a monolith form using a hydraulic press and then was followed by carbonization process at 650, 700 and 750˚C, then physical activation by flowing CO2 at 900˚C. Characterization of the physical properties of the carbon electrode showed that the density of the PN650 sample carbonized at 650°C had the lowest density value. Microstructure characterization indicated that the carbon electrode had a semi crystalline structure, it was characterized by the presence of peaks (002) and (100) at an angle of 2θ around 24˚ and 43˚. The results of the microstructure characterization also showed that the PN650 sample had the highest Lc value of 7.947 nm. Analysis of electrochemical properties showed that the PN650 sample had the largest capacitance value of 223.55 F/g. It can be concluded that 650˚C was the best temperature in the process of making carbon electrodes from palm leaf midrib to be applied as supercapacitor cell electrodes.Keywords: Ketaping, Activated Carbon, Supercapacitor, Activator, Capacitance.


Sign in / Sign up

Export Citation Format

Share Document