Short-term forecasting for Wind Speed based on machine learning using weather observation data

2020 ◽  
Vol 31 (5) ◽  
pp. 823-837
Author(s):  
Hyeong-Se Jeong
Author(s):  
Annael J. Domingo ◽  
Felan Carlo Garcia ◽  
Mary Lai Salvana ◽  
Nathaniel J. C. Libatique ◽  
Gregory L. Tangonan

Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3901 ◽  
Author(s):  
Namrye Son ◽  
Seunghak Yang ◽  
Jeongseung Na

Renewable energy has recently gained considerable attention. In particular, the interest in wind energy is rapidly growing globally. However, the characteristics of instability and volatility in wind energy systems also affect power systems significantly. To address these issues, many studies have been carried out to predict wind speed and power. Methods of predicting wind energy are divided into four categories: physical methods, statistical methods, artificial intelligence methods, and hybrid methods. In this study, we proposed a hybrid model using modified LSTM (Long short-term Memory) to predict short-term wind power. The data adopted by modified LSTM use the current observation data (wind power, wind direction, and wind speed) rather than previous data, which are prediction factors of wind power. The performance of modified LSTM was compared among four multivariate models, which are derived from combining the current observation data. Among multivariable models, the proposed hybrid method showed good performance in the initial stage with Model 1 (wind power) and excellent performance in the middle to late stages with Model 3 (wind power, wind speed) in the estimation of short-term wind power. The experiment results showed that the proposed model is more robust and accurate in forecasting short-term wind power than the other models.


2020 ◽  
Vol 10 (23) ◽  
pp. 8400 ◽  
Author(s):  
Abdelkader Dairi ◽  
Fouzi Harrou ◽  
Ying Sun ◽  
Sofiane Khadraoui

The accurate modeling and forecasting of the power output of photovoltaic (PV) systems are critical to efficiently managing their integration in smart grids, delivery, and storage. This paper intends to provide efficient short-term forecasting of solar power production using Variational AutoEncoder (VAE) model. Adopting the VAE-driven deep learning model is expected to improve forecasting accuracy because of its suitable performance in time-series modeling and flexible nonlinear approximation. Both single- and multi-step-ahead forecasts are investigated in this work. Data from two grid-connected plants (a 243 kW parking lot canopy array in the US and a 9 MW PV system in Algeria) are employed to show the investigated deep learning models’ performance. Specifically, the forecasting outputs of the proposed VAE-based forecasting method have been compared with seven deep learning methods, namely recurrent neural network, Long short-term memory (LSTM), Bidirectional LSTM, Convolutional LSTM network, Gated recurrent units, stacked autoencoder, and restricted Boltzmann machine, and two commonly used machine learning methods, namely logistic regression and support vector regression. The results of this investigation demonstrate the satisfying performance of deep learning techniques to forecast solar power and point out that the VAE consistently performed better than the other methods. Also, results confirmed the superior performance of deep learning models compared to the two considered baseline machine learning models.


Wind Energy ◽  
2011 ◽  
Vol 14 (6) ◽  
pp. 719-734 ◽  
Author(s):  
R. Baïle ◽  
J. F. Muzy ◽  
P. Poggi

Sign in / Sign up

Export Citation Format

Share Document