scholarly journals A Study of Cooling System Control of Fuel Cell Truck

2022 ◽  
Vol 30 (1) ◽  
pp. 9-18
Author(s):  
Jongbin Woo ◽  
Younghyeon Kim ◽  
Sangseok Yu
2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Jehun Hahm ◽  
Hyoseok Kang ◽  
Jaeho Baek ◽  
Heejin Lee ◽  
Mignon Park

This paper proposes an integrated photovoltaic (PV) and proton exchange membrane fuel cell (PEMFC) system for continuous energy harvesting under various operating conditions for use with a brushless DC motor. The proposed scheme is based on the incremental conductance (IncCond) algorithm combined with the sliding mode technique. Under changing atmospheric conditions, the energy conversion efficiency of a PV array is very low, leading to significant power losses. Consequently, increasing efficiency by means of maximum power point tracking (MPPT) is particularly important. To manage such a hybrid system, control strategies need to be established to achieve the aim of the distributed system. Firstly, a Matlab/Simulink based model of the PV and PEMFC is developed and validated, as well as the incremental conductance sliding (ICS) MPPT technique; then, different MPPT algorithms are employed to control the PV array under nonuniform temperature and insolation conditions, to study these algorithms effectiveness under various operating conditions. Conventional techniques are easy to implement but produce oscillations at MPP. Compared to these techniques, the proposed technique is more efficient; it produces less oscillation at MPP in the steady state and provides more precise tracking.


2021 ◽  
Vol 248 ◽  
pp. 114800
Author(s):  
Quangang Xia ◽  
Tong Zhang ◽  
Yuan Gao ◽  
XiChen Ye ◽  
Ciming Guan

Author(s):  
Munzer S. Y. Ebaid ◽  
Mohamad Y. Mustafa

The design of the fuel cell plays a major role in determining their cost. It is not only the cost of materials that increases the cost of the fuel cell, but also the manufacturing techniques and the need for skilled technicians for assembling and testing the fuel cell. The work presented in this paper is part of a research work aims to design and manufacture a proton exchange membrane (PEM) modular fuel cell of 100 W output at low cost using conventional materials and production techniques, then testing the fuel cell to validate its performance. This paper will be dealing only with the design of a modular fuel cell that can be mass produced and used to set up a larger fuel cell stack for stationary applications (6 kW) which is capable of powering a medium sized household. The design for 100 W fuel cell module will include the calculations for the main dimensions of the fuel cell components, mass flow rate of reactants, water production, heat output, heat transfer and the cooling system. This work is intended to facilitate material and process selection prior to manufacturing alternatives prior to capital investment for wide-scale production. The authors believe that the paper would lead to a stimulating discussion.


2012 ◽  
Vol 538-541 ◽  
pp. 2015-2019
Author(s):  
Zhen Zhe Li ◽  
Xiao Ming Pan ◽  
Ming Ren ◽  
Mei Qin Li ◽  
Gui Ying Shen

With the heightened concern for energy consumption and environment conservation, the interest on fuel cell HEV (hybrid electric vehicle) has been greatly increased. In this study, a numerical model for the cooling system of batteries was constructed. Using the constructed analysis model, the material of the cartridge and the cartridge width were checked for improving the performance of the cooling system of batteries. The performance was changed by using different cartridge material, and the cartridge width also has an effect to the performance of the cooling system of batteries as shown in the analysis results. The constructed model and method can be used to investigate the performance of the cooling system of batteries.


Volume 1 ◽  
2004 ◽  
Author(s):  
M. H. Saidi ◽  
A. A. Mozafari ◽  
L. Sharifian

Cell temperature in fuel cells is an important parameter which highly affects fuel cell stack efficiency. A suitable cooling system should satisfy an acceptable temperature range. In this research a relevant cooling system for a specified PEM fuel cell stack has been proposed complying with the criteria and cooling requirements of the fuel cell. The effect of various parameters on the entropy generation and temperature distribution in the cooling plates are surveyed. The number of cooling plates, the number of channels in each cooling plate and the channel width is determined. Two flow regimes namely laminar and turbulent flows of the cooling fluid in channels are analyzed and a design methodology is proposed for each regime of flow. The proposed design methodology in turbulent flow will be optimized while the work destruction is minimized. However, the proposed design in laminar flow is not the optimum one but the most efficient between different configurations. The comparison between these two proposed designs show that the turbulent flow has a lower entropy generation. In addition to entropy generation minimization, to have a desirable optimum cooling system, other parameters such as the size of the cooling plates and temperature uniformity inside cooling system have been investigated in this analysis.


Author(s):  
Richard T. Meyer ◽  
Bin Yao

Previous research has assumed that a perfect Proton Exchange Membrane Fuel Cell (PEMFC) body temperature manager is available. Maintaining this temperature at a desired value can ensure a high reaction efficiency over all operation. However, fuel cell internal body temperature control has not been specifically presented so far. This work presents such control, using a Multiple Input Single Output (MISO) fuel cell cooling system to regulate the internal body temperature of a PEMFC intended for transportation. The cooling system plant is taken from a recently developed hydrogen/air PEMFC total system model. It is linearized and used to design a series of controllers via μ-synthesis. μ-synthesis is chosen since system nonlinearities can be handled as parameter uncertainties. A controller must coordinate the desired fuel cell internal temperature and commanded mass flow rates of the coolant and cooling air. Each linear controller is created for a segment of the expected current density range. Plant parameters are expected to vary over their linearized values in each segment. Also, a common set of μ-synthesis weighting functions has been developed to ease controller design at different operating points. Thus, the nonlinear cooling subsystem can be controlled with a series of current density scheduled linear controllers. Current density step change simulations are presented to compare the controller closed loop performance and open loop response which uses cooling system flow rates taken from an optimal steady state solution of the whole fuel cell system. Furthermore, a closed loop sinusoid response is also given. These show that the closed loop driven internal fuel cell temperature will vary little during operation. However, this will only be true over the range that the cooling system is required to be active.


Author(s):  
Larry Banta ◽  
Jason Absten ◽  
Alex Tsai ◽  
Randall Gemmen ◽  
David Tucker

The National Energy Technology Laboratory (NETL) has developed a hardware simulator to test the operating characteristics of Solid Oxide Fuel Cell/Gas Turbine (SOFC/GT) hybrid systems. The Hybrid Performance (HyPer) simulator has been described previously, and has contributed to the understanding of SOFC/GT system operation. HyPer contains not only the requisite elements of gas turbine/compressor/generator, recuperator, combustor, and associated piping, but also several air flow control valves that are proposed as system control mechanisms. It is necessary to know how operation of these valves affects the various entities such as cathode air flow, turbine speed, and various temperatures important to the safe and efficient operation of fuel cell/gas turbine hybrid systems. To determine the interactions among key variables, a series of experiments was performed in which the effect of modulating each of the key manipulated variables was recorded. This document outlines the test methods used and presents some of the data from those tests, along with analysis and interpretation of that data in the context of control system design.


Sign in / Sign up

Export Citation Format

Share Document