manufacturing alternatives
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 4)

H-INDEX

2
(FIVE YEARS 0)

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 678
Author(s):  
Mikel Casuso ◽  
Fernando Veiga ◽  
Alfredo Suárez ◽  
Trunal Bhujangrao ◽  
Eider Aldalur ◽  
...  

Gas Metal Arc Welding (GMAW) is a manufacturing technology included within the different Wire Arc Additive Manufacturing alternatives. These technologies have been generating great attention among scientists in recent decades. Its main qualities that make it highly productive with a large use of material with relatively inexpensive machine solutions make it a very advantageous technology. This paper covers the application of this technology for the manufacture of thin-walled parts. A finite element model is presented for estimating the deformations in this type of parts. This paper presents a simulation model that predicts temperatures with less than 5% error and deformations of the final part that, although quantitatively has errors of 20%, qualitatively allows to know the deformation modes of the part. Knowing the part areas subject to greater deformation may allow the future adaptation of deposition strategies or redesigns for their adaptation. These models are very useful both at a scientific and industrial level since when we find ourselves with a technology oriented to Near Net Shape (NNS) manufacturing where deformations are critical for obtaining the final part in a quality regime.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Miguel Ángel Caminero ◽  
Ana Romero ◽  
Jesús Miguel Chacón ◽  
Pedro José Núñez ◽  
Eustaquio García-Plaza ◽  
...  

Purpose Fused filament fabrication (FFF) technique using metal filled filaments in combination with debinding and sintering steps can be a cost-effective alternative for laser-based powder bed fusion processes. The mechanical behaviour of FFF-metal materials is highly dependent on the processing parameters, filament quality and adjusted post-processing steps. In addition, the microstructural material properties and geometric characteristics are inherent to the manufacturing process. The purpose of this study is to characterize the mechanical and geometric performance of three-dimensional (3-D) printed FFF 316 L metal components manufactured by a low-cost desktop 3-D printer. The debinding and sintering processes are carried out using the BASF catalytic debinding process in combination with the BASF 316LX Ultrafuse filament. Special attention is paid on the effects of build orientation and printing strategy of the FFF-based technology on the tensile and geometric performance of the 3-D printed 316 L metal specimens. Design/methodology/approach This study uses a toolset of experimental analysis techniques [metallography and scanning electron microcope (SEM)] to characterize the effect of microstructure and defects on the material properties under tensile testing. Shrinkage and the resulting porosity of the 3-D printed 316 L stainless steel sintered samples are also analysed. The deformation behaviour is investigated for three different build orientations. The tensile test curves are further correlated with the damage surface using SEM images and metallographic sections to present grain deformation during the loading progress. Mechanical properties are directly compared to other works in the field and similar additive manufacturing (AM) and Metal Injection Moulding (MIM) manufacturing alternatives from the literature. Findings It has been shown that the effect of build orientation was of particular significance on the mechanical and geometric performance of FFF-metal 3-D printed samples. In particular, Flat and On-edge samples showed an average increase in tensile performance of 21.7% for the tensile strength, 65.1% for the tensile stiffness and 118.3% for maximum elongation at fracture compared to the Upright samples. Furthermore, it has been able to manufacture near-dense 316 L austenitic stainless steel components using FFF. These properties are comparable to those obtained by other metal conventional processes such as MIM process. Originality/value 316L austenitic stainless steel components using FFF technology with a porosity lower than 2% were successfully manufactured. The presented study provides more information regarding the dependence of the mechanical, microstructural and geometric properties of FFF 316 L components on the build orientation and printing strategy.


Author(s):  
Marco Mandolini ◽  
Federico Campi ◽  
Claudio Favi ◽  
Michele Germani

Abstract The production cost is one of the most important drivers for product competitiveness. For increasing profits, a manufacturing process re-engineering is mandatory. This practice passes through systematic procedures for process selection, cost estimation and results analysis. This paper presents a method for evaluating different manufacturing alternatives for cost reduction. This method, composed of eight steps (most of them retrieved from the scientific literature), permits engineers to consider important aspects, such as the choice of cost estimation tools, the collection of data related to production processes, the impact related to the introduction of new production processes and the interpretation of results. Authors adopted such method for evaluating economic benefits of introducing a new manufacturing technology (i.e. investment casting) for three components of a food packaging machine. The adoption of the proposed method leads to compare investment casting vs. machining. The paper presents a detailed discussion of the economic benefits (return on investment, cash flows and manufacturing cost breakdown) related to the introduction of the investment casting technology.


Author(s):  
Brandon Massoni ◽  
Matthew I. Campbell

While additive manufacturing allows more complex shapes than conventional manufacturing processes, there is a clear benefit in leveraging both new and old processes in the definition of metal parts. For example, one could create complex part shapes where the main “body” is defined by extrusion and machining, while small protruding features are defined by additive manufacturing. This paper looks at how optimization and geometric reasoning can be combined to identify cutting planes within complex three-dimensional (3D) shapes. These cutting planes are used to divide realistic mechanical parts into subparts that can be joined together through additive manufacturing or linear friction welding (LFW). The optimization method presents possible manufacturing alternatives to an engineering designer where optimality is defined as a minimization of cost. The paper presents and compares several cutting planes identification methods and describes how the optimization finds the optimal results for several example parts.


Author(s):  
Brandon Massoni ◽  
Matthew I. Campbell

While additive manufacturing allows more complex shapes than conventional manufacturing processes, there is a clear benefit in leveraging both new and old processes in the definition of new parts. For example, one could create complex part shapes where the main “body” is defined by extrusion and machining, while small protruding features are defined by additive manufacturing. This paper looks at how optimization and geometric reasoning can be combined to identify optimal separation planes within a complex three-dimensional shapes. These separations indicate the joining processes in reverse. The optimization method presents possible manufacturing alternatives to an engineering designer where optimality is defined as a minimization of cost. The process identifies the cutting planes as well as the combination of processes required to join the individual parts together. The paper presents several examples of complex shapes and describes how the optimization finds the optimal results.


Author(s):  
Ala Qattawi

Origami-based sheet metal (OSM) folding techniques is a new emerging manufacturing procedure for sheet metal. In OSM the final part is folded into the desired 3D geometry using a sequence of folded bend lines. This process is enabled by creating material discontinues along the bend lines, either by laser cutting or by stamping. The objective of this paper is to optimize the design of OSM products while accounting for all possible flat patterns and accommodate manufacturing requirements for sheet metal products. OSM has an anticipated manufacturing benefits compared to traditional processes of sheet metal such as stamping; it requires minimal tooling and energy requirements thus is suitable for sustainable manufacturing alternatives. This paper discusses the implementation of optimization technique for OSM parts using a combination of traversal algorithm and manufacturing based indexes to reflect the requirements present in sheet metal industry. The outcomes of the optimization procedure resulted with topologically valid flat patterns with minimal scrap and wasted materials, in addition to minimal number of welded lines and fold line orientations in case of a robot effector is used to perform the fold. The work presented in this paper verified the validity of folding sheet metal using a single flat pattern into complex 3-D geometries from topological point view, in addition it highlights the major manufacturing concerns in folding sheet metal. This work also demonstrates a case study of optimizing a vehicular OSM part developed method.


Author(s):  
Munzer S. Y. Ebaid ◽  
Mohamad Y. Mustafa

The design of the fuel cell plays a major role in determining their cost. It is not only the cost of materials that increases the cost of the fuel cell, but also the manufacturing techniques and the need for skilled technicians for assembling and testing the fuel cell. The work presented in this paper is part of a research work aims to design and manufacture a proton exchange membrane (PEM) modular fuel cell of 100 W output at low cost using conventional materials and production techniques, then testing the fuel cell to validate its performance. This paper will be dealing only with the design of a modular fuel cell that can be mass produced and used to set up a larger fuel cell stack for stationary applications (6 kW) which is capable of powering a medium sized household. The design for 100 W fuel cell module will include the calculations for the main dimensions of the fuel cell components, mass flow rate of reactants, water production, heat output, heat transfer and the cooling system. This work is intended to facilitate material and process selection prior to manufacturing alternatives prior to capital investment for wide-scale production. The authors believe that the paper would lead to a stimulating discussion.


2007 ◽  
Vol 129 (5) ◽  
pp. 979-983 ◽  
Author(s):  
Elisabetta Amici ◽  
Francesca Campana ◽  
Edoardo Mancini

This paper presents a computer-aided design (CAD) module able to analyze different manufacturing configurations of tubes used in mechanical assemblies, such as exhaust system manifolds. It can be included in the knowledge-based expert system category and has been implemented into a CAD platform as a dedicated module able to take into account manufacturing requirements related to tube bending, hydroforming, and cutting. The expert’s knowledge, in terms of set of rules and criteria, has been implemented by means of the automation tools of CATIAV5R10 according to the so-called methodological formal approach. The resulting module is able to join different tubes starting from their geometrical models, obtaining a set of manufacturing alternatives. Each of them is verified with respect to collisions with a bending machine and also in terms of hydroforming process feasibility. Only those solutions that satisfy these checks are accepted as feasible and ranked according to three evaluation criteria related to manufacturing cost and easiness. The system is completely automatic and able to analyze more than 100 different configurations in <10min. The feasible solutions are saved as CAD model to allow FEA of hydroforming and other possible CAE activities. Unfeasible solutions are deleted but reported and documented in a log file. The feasible solution rank is given in a table and has been developed according to a multicriteria approach to make optimal solution detection easier. The proposed test case aims to show and discuss these capabilities. By this module, two or more components of the exhaust system manifold can be manufactured in one stroke as a single component, starting from the same pipe and next trimmed to obtain the desired final parts. This capability can be used to reduce scraps and improve cycle time of the manufacturing process.


Sign in / Sign up

Export Citation Format

Share Document