scholarly journals Valley and spin polarization manipulated by electric field in magnetic silicene superlattice

2018 ◽  
Vol 67 (8) ◽  
pp. 086801
Author(s):  
Hou Hai-Yan ◽  
Yao Hui ◽  
Li Zhi-Jian ◽  
Nie Yi-Hang
2011 ◽  
Vol 25 (15) ◽  
pp. 1259-1270
Author(s):  
TIANXING MA

Within the Luttinger Hamiltonian, electric-field-induced resonant spin polarization of a two-dimensional hole gas in a perpendicular magnetic field was studied. The spin polarization arising from splitting between the light and the heavy hole bands shows a resonant peak at a certain magnetic field. Especially, the competition between the Luttinger term and the structural inversion asymmetry leads to a rich resonant peaks structure, and the required magnetic field for the resonance may be effectively reduced by enlarging the effective width of the quantum well. Furthermore, the Zeeman splitting tends to move the resonant spin polarization to a relative high magnetic field and destroy these rich resonant spin phenomena. Finally, both the height and the weight of the resonant peak increase as the temperature decreases. It is believed that such resonant spin phenomena may be verified in the sample of a two-dimensional hole gas, and it may provide an efficient way to control spin polarization by an external electric field.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 399
Author(s):  
Yang Zhang ◽  
Yu Liu ◽  
Xiao-Lan Xue ◽  
Xiao-Lin Zeng ◽  
Jing Wu ◽  
...  

Circularly polarized photocurrent, observed in p-doped bulk GaAs, varies nonlinearly with the applied bias voltage at room temperature. It has been explored that this phenomenon arises from the current-induced spin polarization in GaAs. In addition, we found that the current-induced spin polarization direction of p-doped bulk GaAs grown in the (001) direction lies in the sample plane and is perpendicular to the applied electric field, which is the same as that in GaAs quantum well. This research indicates that circularly polarized photocurrent is a new optical approach to investigate the current-induced spin polarization at room temperature.


2019 ◽  
Vol 33 (16) ◽  
pp. 1950166
Author(s):  
Huan Ma ◽  
Ling Ma ◽  
Liang-Cai Ma

The effect of gas molecule (H2CO, NO, NO2, O2 and SO2) adsorption on the electronic and magnetic properties of Mn-doped graphene (MnG) is investigated by first-principles calculations in the framework of density functional theory (DFT). Our study reveals that after H2CO, NO, NO2 and SO2 adsorption, MnG transforms from half-metal to semiconductor, and this transformation indicates that MnG’s conductivity is changed significantly. Meanwhile, O2 adsorption has no influence on MnG’s original electronic property. Therefore, the substrate of MnG is highly sensitive to H2CO, NO, NO2 and SO2. The reconfiguration of electron distribution caused by gas adsorption dramatically alters the spin polarization distribution of the combined system, that is, NO2 and H2CO adsorption leads to local spin polarization, whereas O2, NO and SO2 adsorption result in complete spin polarization. In addition, the external electric field (E-field) is varied from −0.50 V/Å to +0.50 V/Å then applied to the adsorption system. A strong interaction is observed between gas and MnG with a positive E-field as reflected in the enhancement of adsorption energy. The interaction is obviously weakened by introducing the E-field in the negative direction. Hence, the adsorption strength and sensitivity of gas on MnG can be effectively tuned by the E-field. The results can serve as useful references for the design of graphene-based gas sensor.


2013 ◽  
Vol 25 (39) ◽  
pp. 5581-5585 ◽  
Author(s):  
Avradeep Pal ◽  
K. Senapati ◽  
Z. H. Barber ◽  
M. G. Blamire

Author(s):  
Zengjie Li ◽  
Xiang Liu ◽  
Jiawei Jiang ◽  
Wenbo Mi ◽  
Haili Bai

Electric field tailored magnetic properties of perovskite-type oxide heterostructures are important in spintronics devices with low energy consumption and small size. Here, the electric field modulated magnetic properties of underoxidized...


Sign in / Sign up

Export Citation Format

Share Document