Two Key Gyri, a Notable Sulcus, and the Wandering Cranial Nerve

Author(s):  
James H. Austin

This chapter examines the structure and multiple functions of the angular gyrus, the parahippocampal gyrus, and the superior temporal sulcus (STS). It also distinguishes between the fusiform face area (FFA) and the parahippocampal place area (PPA).

2004 ◽  
Vol 16 (9) ◽  
pp. 1669-1679 ◽  
Author(s):  
Emily D. Grossman ◽  
Randolph Blake ◽  
Chai-Youn Kim

Individuals improve with practice on a variety of perceptual tasks, presumably reflecting plasticity in underlying neural mechanisms. We trained observers to discriminate biological motion from scrambled (nonbiological) motion and examined whether the resulting improvement in perceptual performance was accompanied by changes in activation within the posterior superior temporal sulcus and the fusiform “face area,” brain areas involved in perception of biological events. With daily practice, initially naive observers became more proficient at discriminating biological from scrambled animations embedded in an array of dynamic “noise” dots, with the extent of improvement varying among observers. Learning generalized to animations never seen before, indicating that observers had not simply memorized specific exemplars. In the same observers, neural activity prior to and following training was measured using functional magnetic resonance imaging. Neural activity within the posterior superior temporal sulcus and the fusiform “face area” reflected the participants' learning: BOLD signals were significantly larger after training in response both to animations experienced during training and to novel animations. The degree of learning was positively correlated with the amplitude changes in BOLD signals.


2019 ◽  
Author(s):  
Lihui Wang ◽  
Florian Baumgartner ◽  
Falko R. Kaule ◽  
Michael Hanke ◽  
Stefan Pollmann

We investigated if the fusiform face area (FFA) and the parahippocampal place area (PPA) contain a representation of fixation sequences that are typically used when looking at faces or houses. For this purpose, we instructed observers to follow a dot presented on a uniform background. The dot's movements represented gaze paths acquired separately while observers were looking at face or house pictures. Even when gaze dispersion differences were controlled, face- and house-associated gaze patterns could be discriminated by multivariate pattern analysis in the FFA and PPA. The discrimination of face- and house-associated gaze patterns in FFA and PPA was more sensitive for the current observer’s own gazes than for another observer’s gaze. Moreover, the discrimination of the observer’s own gaze patterns was specific to FFA and PPA, but was not observed in early visual areas (V1 – V4) or superior parietal lobule and frontal eye fields. These findings indicate a link between perception and action - the complex gaze patterns that are used to explore faces and houses - in the FFA and PPA.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Lihui Wang ◽  
Florian Baumgartner ◽  
Falko R. Kaule ◽  
Michael Hanke ◽  
Stefan Pollmann

AbstractWe investigated if the fusiform face area (FFA) and the parahippocampal place area (PPA) contain a representation of fixation sequences that are typically used when looking at faces or houses. Here, we instructed observers to follow a dot presented on a uniform background. The dot’s movements represented gaze paths acquired separately from observers looking at face or house pictures. Even when gaze dispersion differences were controlled, face- and house-associated gaze patterns could be discriminated by fMRI multivariate pattern analysis in FFA and PPA, more so for the current observer’s own gazes than for another observer’s gaze. The discrimination of the observer’s own gaze patterns was not observed in early visual areas (V1 – V4) or superior parietal lobule and frontal eye fields. These findings indicate a link between perception and action—the complex gaze patterns that are used to explore faces and houses—in the FFA and PPA.


2004 ◽  
Vol 4 (8) ◽  
pp. 131-131 ◽  
Author(s):  
G. Golarai ◽  
D. G. Ghahremani ◽  
J. L. Eberhardt ◽  
K. Grill-Spector ◽  
G. D. E. Gabrieli

Animals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 108
Author(s):  
Kirsten D. Gillette ◽  
Erin M. Phillips ◽  
Daniel D. Dilks ◽  
Gregory S. Berns

Previous research to localize face areas in dogs’ brains has generally relied on static images or videos. However, most dogs do not naturally engage with two-dimensional images, raising the question of whether dogs perceive such images as representations of real faces and objects. To measure the equivalency of live and two-dimensional stimuli in the dog’s brain, during functional magnetic resonance imaging (fMRI) we presented dogs and humans with live-action stimuli (actors and objects) as well as videos of the same actors and objects. The dogs (n = 7) and humans (n = 5) were presented with 20 s blocks of faces and objects in random order. In dogs, we found significant areas of increased activation in the putative dog face area, and in humans, we found significant areas of increased activation in the fusiform face area to both live and video stimuli. In both dogs and humans, we found areas of significant activation in the posterior superior temporal sulcus (ectosylvian fissure in dogs) and the lateral occipital complex (entolateral gyrus in dogs) to both live and video stimuli. Of these regions of interest, only the area along the ectosylvian fissure in dogs showed significantly more activation to live faces than to video faces, whereas, in humans, both the fusiform face area and posterior superior temporal sulcus responded significantly more to live conditions than video conditions. However, using the video conditions alone, we were able to localize all regions of interest in both dogs and humans. Therefore, videos can be used to localize these regions of interest, though live conditions may be more salient.


Author(s):  
Andrew C. Papanicolaou

This chapter focuses on the search for mnemonic traces of concepts that are thought to exist in the form of neuronal circuits in the brain. It begins with a review of the evidence derived from observations of the effects of focal brain lesions suggesting that there are several brain regions specialized for recognizing objects belonging to different categories. It then considers brain areas that have been identified through functional neuroimaging, including the fusiform face area, the parahippocampal place area, and the extra-striate body area. It also examines the specialization of the anterior part of the temporal lobes, especially the left, for naming, and whether these and other brain areas contain mnemonic traces of concepts or traces of cardinal concept features. Finally, it discusses the “top-down” activation of category-specific areas and the idea of distributed storage of concept features.


2019 ◽  
Vol 30 (2) ◽  
pp. 778-785 ◽  
Author(s):  
David Pitcher ◽  
Amy Pilkington ◽  
Lionel Rauth ◽  
Chris Baker ◽  
Dwight J Kravitz ◽  
...  

Abstract Neuroimaging studies show that ventral face-selective regions, including the fusiform face area (FFA) and occipital face area (OFA), preferentially respond to faces presented in the contralateral visual field (VF). In the current study we measured the VF response of the face-selective posterior superior temporal sulcus (pSTS). Across 3 functional magnetic resonance imaging experiments, participants viewed face videos presented in different parts of the VF. Consistent with prior results, we observed a contralateral VF bias in bilateral FFA, right OFA (rOFA), and bilateral human motion-selective area MT+. Intriguingly, this contralateral VF bias was absent in the bilateral pSTS. We then delivered transcranial magnetic stimulation (TMS) over right pSTS (rpSTS) and rOFA, while participants matched facial expressions in both hemifields. TMS delivered over the rpSTS disrupted performance in both hemifields, but TMS delivered over the rOFA disrupted performance in the contralateral hemifield only. These converging results demonstrate that the contralateral bias for faces observed in ventral face-selective areas is absent in the pSTS. This difference in VF response is consistent with face processing models proposing 2 functionally distinct pathways. It further suggests that these models should account for differences in interhemispheric connections between the face-selective areas across these 2 pathways.


2010 ◽  
Vol 22 (1) ◽  
pp. 203-211 ◽  
Author(s):  
Jia Liu ◽  
Alison Harris ◽  
Nancy Kanwisher

fMRI studies have reported three regions in human ventral visual cortex that respond selectively to faces: the occipital face area (OFA), the fusiform face area (FFA), and a face-selective region in the superior temporal sulcus (fSTS). Here, we asked whether these areas respond to two first-order aspects of the face argued to be important for face perception, face parts (eyes, nose, and mouth), and the T-shaped spatial configuration of these parts. Specifically, we measured the magnitude of response in these areas to stimuli that (i) either contained real face parts, or did not, and (ii) either had veridical face configurations, or did not. The OFA and the fSTS were sensitive only to the presence of real face parts, not to the correct configuration of those parts, whereas the FFA was sensitive to both face parts and face configuration. Further, only in the FFA was the response to configuration and part information correlated across voxels, suggesting that the FFA contains a unified representation that includes both kinds of information. In combination with prior results from fMRI, TMS, MEG, and patient studies, our data illuminate the functional division of labor in the OFA, FFA, and fSTS.


Sign in / Sign up

Export Citation Format

Share Document