Learning Mechanisms in Addictive Disorders

Author(s):  
Andreas Heinz

Addictive disorders may best be described as attribution of salience to drug-associated cues and drug consumption at the expense of other reinforcers. Dopamine and serotonin dysfunction can contribute to these states due to drug-associated neuroadaptation and alterations in bottom-up and top-down information processing. Relevant findings are described with respect to their computational and behavioral implications.

2018 ◽  
Author(s):  
Christian D. Márton ◽  
Makoto Fukushima ◽  
Corrie R. Camalier ◽  
Simon R. Schultz ◽  
Bruno B. Averbeck

AbstractPredictive coding is a theoretical framework that provides a functional interpretation of top-down and bottom up interactions in sensory processing. The theory has suggested that specific frequency bands relay bottom-up and top-down information (e.g. “γ up, β down”). But it remains unclear whether this notion generalizes to cross-frequency interactions. Furthermore, most of the evidence so far comes from visual pathways. Here we examined cross-frequency coupling across four sectors of the auditory hierarchy in the macaque. We computed two measures of cross-frequency coupling, phase-amplitude coupling (PAC) and amplitude-amplitude coupling (AAC). Our findings revealed distinct patterns for bottom-up and top-down information processing among cross-frequency interactions. Both top-down and bottom-up made prominent use of low frequencies: low-to-low frequency (θ, α, β) and low frequency-to-high γ couplings were predominant top-down, while low frequency-to-low γ couplings were predominant bottom-up. These patterns were largely preserved across coupling types (PAC and AAC) and across stimulus types (natural and synthetic auditory stimuli), suggesting they are a general feature of information processing in auditory cortex. Moreover, our findings showed that low-frequency PAC alternated between predominantly top-down or bottom-up over time. Altogether, this suggests sensory information need not be propagated along separate frequencies upwards and downwards. Rather, information can be unmixed by having low frequencies couple to distinct frequency ranges in the target region, and by alternating top-down and bottom-up processing over time.1SignificanceThe brain consists of highly interconnected cortical areas, yet the patterns in directional cortical communication are not fully understood, in particular with regards to interactions between different signal components across frequencies. We employed a a unified, computationally advantageous Granger-causal framework to examine bi-directional cross-frequency interactions across four sectors of the auditory cortical hierarchy in macaques. Our findings extend the view of cross-frequency interactions in auditory cortex, suggesting they also play a prominent role in top-down processing. Our findings also suggest information need not be propagated along separate channels up and down the cortical hierarchy, with important implications for theories of information processing in the brain such as predictive coding.


Author(s):  
Andreas Heinz

Psychotic experiences may best be described as an alteration in the self-ascription of thoughts and actions, which is associated with a profoundly altered experience of oneself and the surrounding world. Computational models of key symptoms of psychiatric disorders are discussed with respect to the attribution of salience and self-relatedness to otherwise irrelevant stimuli and the role of top-down modelling in the generation of delusions. Top-down and bottom-up approaches in understanding mental disorders and their computational models are compared and critically reflected.


2015 ◽  
Vol 112 (43) ◽  
pp. 13401-13406 ◽  
Author(s):  
Christoph Teufel ◽  
Naresh Subramaniam ◽  
Veronika Dobler ◽  
Jesus Perez ◽  
Johanna Finnemann ◽  
...  

Many neuropsychiatric illnesses are associated with psychosis, i.e., hallucinations (perceptions in the absence of causative stimuli) and delusions (irrational, often bizarre beliefs). Current models of brain function view perception as a combination of two distinct sources of information: bottom-up sensory input and top-down influences from prior knowledge. This framework may explain hallucinations and delusions. Here, we characterized the balance between visual bottom-up and top-down processing in people with early psychosis (study 1) and in psychosis-prone, healthy individuals (study 2) to elucidate the mechanisms that might contribute to the emergence of psychotic experiences. Through a specialized mental-health service, we identified unmedicated individuals who experience early psychotic symptoms but fall below the threshold for a categorical diagnosis. We observed that, in early psychosis, there was a shift in information processing favoring prior knowledge over incoming sensory evidence. In the complementary study, we capitalized on subtle variations in perception and belief in the general population that exhibit graded similarity with psychotic experiences (schizotypy). We observed that the degree of psychosis proneness in healthy individuals, and, specifically, the presence of subtle perceptual alterations, is also associated with stronger reliance on prior knowledge. Although, in the current experimental studies, this shift conferred a performance benefit, under most natural viewing situations, it may provoke anomalous perceptual experiences. Overall, we show that early psychosis and psychosis proneness both entail a basic shift in visual information processing, favoring prior knowledge over incoming sensory evidence. The studies provide complementary insights to a mechanism by which psychotic symptoms may emerge.


Perception ◽  
1993 ◽  
Vol 22 (5) ◽  
pp. 517-526 ◽  
Author(s):  
Okihide Hikosaka ◽  
Satoru Miyauchi ◽  
Shinsuke Shimojo

Attention may be drawn passively to a visually salient object. We may also actively direct attention to an object of interest. Do the two kinds of attention, passive and active, interact and jointly influence visual information processing at some neural level? What happens if the passive and active attentions come into conflict? These questions were addressed with the aid of a novel psychophysical technique which reveals an attentional gradient as a sensation of motion in a line which is presented instantaneously. The subjects were asked to direct attention with voluntary effort: to the side opposite to a stimulus change, to an object with a predetermined colour, and to an object moving smoothly. In every case the same motion sensation was induced in the line from the attended side to the unattended side. This voluntary attention, however, can easily and quickly be distracted by a change in the periphery, though it can be regained within a period of 200 to 500 ms. The results suggest that the line motion can be induced in voluntary (top-down) as well as stimulus-driven (bottom-up) situations, thus indicating the truly attentional nature of the effect, rather than it being some kind of retinotopic sensory artifact or response bias. The results also suggest that these two kinds of attention have facilitatory effects acting together on a relatively early stage of visual information processing.


1995 ◽  
Vol 80 (2) ◽  
pp. 447-465 ◽  
Author(s):  
Elizabeth K. Dreben ◽  
John H. Fryer ◽  
Douglas M. McNair

Schizophrenic patients ( n = 20), depressive patients ( n = 20), and normal adults ( n = 20) were compared on global vs local analyses of perceptual information using tachistoscopic tasks and on top-down vs bottom-up conceptual processing using card-sort tasks. The schizophrenic group performed more poorly on tasks requiring either global analyses (counting lines when distracting circles were present) or top-down conceptual processing (rule learning) than they did on tasks requiring local analyses (counting heterogeneous lines) or bottom-up processing (attribute identification). The schizophrenic group appeared not to use conceptually guided processing. Normal adults showed the reverse pattern. The depressive group performed similarly to the schizophrenic group on perceptual tasks but closer to the normal group on conceptual tasks, thereby appearing to be less dependent on a particular information-processing strategy. These deficits in organizational strategy may be related to the use of available processing resources as well as the allocation of attention.


eNeuro ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. ENEURO.0467-18.2019 ◽  
Author(s):  
Christian D. Márton ◽  
Makoto Fukushima ◽  
Corrie R. Camalier ◽  
Simon R. Schultz ◽  
Bruno B. Averbeck

2021 ◽  
pp. 095679762097578
Author(s):  
Martin Constant ◽  
Heinrich R. Liesefeld

Limitations in the ability to temporarily represent information in visual working memory (VWM) are crucial for visual cognition. Whether VWM processing is dependent on an object’s saliency (i.e., how much it stands out) has been neglected in VWM research. Therefore, we developed a novel VWM task that allows direct control over saliency. In three experiments with this task (on 10, 31, and 60 adults, respectively), we consistently found that VWM performance is strongly and parametrically influenced by saliency and that both an object’s relative saliency (compared with concurrently presented objects) and absolute saliency influence VWM processing. We also demonstrated that this effect is indeed due to bottom-up saliency rather than differential fit between each object and the top-down attentional template. A simple computational model assuming that VWM performance is determined by the weighted sum of absolute and relative saliency accounts well for the observed data patterns.


i-Perception ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 204166952098725
Author(s):  
Hyunmin Kang ◽  
Jeayeong Ji ◽  
Yeji Yun ◽  
Kwanghee Han

Although most people are not aware of it, bias can occur when interpreting graphs. Within-the-bar bias describes a misinterpretation of the distribution of data underlying bar graphs that indicate an average or where the average estimation point moves inside the bar when the average of several graphs is estimated. This study proposes and tests two methods based on information processing to reduce within-the-bar bias. The first method facilitates bottom-up processing by changing various graph features, such as presenting confidence intervals, placing boundaries around the graph, and showing cumulative bars with different tones. The second method facilitates top-down processing by instructing participants to estimate the mean based on a dot at the end of each bar. Testing of the first method showed that cumulative bars reduced bias, but the other methods did not. The second method was found to reduce bias. Overall, our results demonstrate that the accurate interpretation of bar graphs can be facilitated through the manipulation of specific graph features and instruction.


2020 ◽  
Author(s):  
P Sorrentino ◽  
G Rabuffo ◽  
R Rucco ◽  
F Baselice ◽  
E Troisi Lopez ◽  
...  

AbstractStimulus perception is assumed to involve the (fast) detection of sensory inputs and their (slower) integration. The capacity of the brain to quickly adapt, at all times, to unexpected stimuli suggests that the interplay between the slow and fast processes happens at short timescales. We hypothesised that, even during resting-state, the flow of information across the brain regions should evolve quickly, but not homogeneously in time. Here we used high temporal-resolution Magnetoencephalography (MEG) signals to estimate the persistence of the information in functional links across the brain. We show that short- and long-lasting retention of the information, entailing different speeds in the update rate, naturally split the brain into two anatomically distinct subnetworks. The “fast updating network” (FUN) is localized in the regions that typically belong to the dorsal and ventral streams during perceptive tasks, while the “slow updating network” (SUN) hinges classically associative areas. Finally, we show that only a subset of the brain regions, which we name the multi-storage core (MSC), belongs to both subnetworks. The MSC is hypothesized to play a role in the communication between the (otherwise) segregated subnetworks.Significance statementThe human brain constantly scans the environment in search of relevant incoming stimuli, and appropriately reconfigures its large-scale activation according to environmental requests. The functional organization substanding these bottom-up and top-down processes, however, is not understood. Studying the speed of information processing between brain regions during resting state, we show the existence of two spatially segregated subnetworks processing information at fast- and slow-rates. Notably, these networks involve the regions that typically belong to the perception stream and the associative regions, respectively. Therefore, we provide evidence that, regardless of the presence of a stimulus, the bottom-up and top-down perceptive pathways are inherent to the resting state dynamics.


Sign in / Sign up

Export Citation Format

Share Document