scholarly journals Time scale separation of information processing between sensory and associative regions

2020 ◽  
Author(s):  
P Sorrentino ◽  
G Rabuffo ◽  
R Rucco ◽  
F Baselice ◽  
E Troisi Lopez ◽  
...  

AbstractStimulus perception is assumed to involve the (fast) detection of sensory inputs and their (slower) integration. The capacity of the brain to quickly adapt, at all times, to unexpected stimuli suggests that the interplay between the slow and fast processes happens at short timescales. We hypothesised that, even during resting-state, the flow of information across the brain regions should evolve quickly, but not homogeneously in time. Here we used high temporal-resolution Magnetoencephalography (MEG) signals to estimate the persistence of the information in functional links across the brain. We show that short- and long-lasting retention of the information, entailing different speeds in the update rate, naturally split the brain into two anatomically distinct subnetworks. The “fast updating network” (FUN) is localized in the regions that typically belong to the dorsal and ventral streams during perceptive tasks, while the “slow updating network” (SUN) hinges classically associative areas. Finally, we show that only a subset of the brain regions, which we name the multi-storage core (MSC), belongs to both subnetworks. The MSC is hypothesized to play a role in the communication between the (otherwise) segregated subnetworks.Significance statementThe human brain constantly scans the environment in search of relevant incoming stimuli, and appropriately reconfigures its large-scale activation according to environmental requests. The functional organization substanding these bottom-up and top-down processes, however, is not understood. Studying the speed of information processing between brain regions during resting state, we show the existence of two spatially segregated subnetworks processing information at fast- and slow-rates. Notably, these networks involve the regions that typically belong to the perception stream and the associative regions, respectively. Therefore, we provide evidence that, regardless of the presence of a stimulus, the bottom-up and top-down perceptive pathways are inherent to the resting state dynamics.

2017 ◽  
Author(s):  
Giri P. Krishnan ◽  
Oscar C. González ◽  
Maxim Bazhenov

AbstractResting or baseline state low frequency (0.01-0.2 Hz) brain activity has been observed in fMRI, EEG and LFP recordings. These fluctuations were found to be correlated across brain regions, and are thought to reflect neuronal activity fluctuations between functionally connected areas of the brain. However, the origin of these infra-slow fluctuations remains unknown. Here, using a detailed computational model of the brain network, we show that spontaneous infra-slow (< 0.05 Hz) fluctuations could originate due to the ion concentration dynamics. The computational model implemented dynamics for intra and extracellular K+ and Na+ and intracellular Cl- ions, Na+/K+ exchange pump, and KCC2 co-transporter. In the network model representing resting awake-like brain state, we observed slow fluctuations in the extracellular K+ concentration, Na+/K+ pump activation, firing rate of neurons and local field potentials. Holding K+ concentration constant prevented generation of these fluctuations. The amplitude and peak frequency of this activity were modulated by Na+/K+ pump, AMPA/GABA synaptic currents and glial properties. Further, in a large-scale network with long-range connections based on CoCoMac connectivity data, the infra-slow fluctuations became synchronized among remote clusters similar to the resting-state networks observed in vivo. Overall, our study proposes that ion concentration dynamics mediated by neuronal and glial activity may contribute to the generation of very slow spontaneous fluctuations of brain activity that are observed as the resting-state fluctuations in fMRI and EEG recordings.


2021 ◽  
Author(s):  
Varun Madan Mohan ◽  
Arpan Banerjee

How communication among neuronal ensembles shapes functional brain dynamics at the large scale is a question of fundamental importance to Neuroscience. To date, researchers have primarily relied on two alternative ways to address this issue 1) in-silico neurodynamical modelling of functional brain dynamics by choosing biophysically inspired non-linear systems, interacting via a connection topology driven by empirical data; and 2) identifying topological measures to quantify network structure and studying them in tandem with functional metrics of interest, e.g. co-variation of time series in brain regions from fast (EEG/ MEG) and slow (fMRI) timescales. While the modelling approaches are limited in scope to only scales of the nervous system for which dynamical models are well defined, the latter approach does not take into account how the network architecture and intrinsic regional node dynamics contribute together to inter-regional communication in the brain. Thus, developing a generalized scale-invariant measure of interaction between network topology and constituent regional dynamics can potentially resolve how transmission of perturbations in brain networks alter function e.g. by neuropathologies, or the intervention strategies designed to mitigate them. In this work, we introduce a recently developed theoretical perturbative framework in network science into a neuroscientific framework, to conceptualize the interaction of regional dynamics and network architecture in a quantifiable manner. This framework further provides insights into the information communication contributions of putative regions and sub-networks in the brain, irrespective of the observational scale of the phenomenon (firing rates to BOLD fMRI time series). The proposed approach can directly quantify network-dynamical interactions without reliance on a specific class of models or response characteristics: linear/nonlinear. By simply gauging the asymmetries in responses to perturbations, we obtain insights into the significance of regions in communication and their influence over the rest of the network. Moreover, coupling perturbations with functional lesions can also answer which regions contribute the most to information spread: a quantity termed Flow. The simplicity of the proposed technique allows translation to an experimental setting where the response asymmetries and flow can inversely act as a window into the dynamics of regions. For proof-of-concept, we apply the perturbative approach on in-silico data generated for human resting state network dynamics, using different established dynamical models that mimic empirical observations. We also apply the perturbation approach at the level of large scale Resting State Networks (RSNs) to gauge the range of network-dynamical interactions in mediating information flow across brain regions.


2019 ◽  
Author(s):  
Felix Siebenhühner ◽  
Sheng H Wang ◽  
Gabriele Arnulfo ◽  
Anna Lampinen ◽  
Lino Nobili ◽  
...  

AbstractPhase synchronization of neuronal oscillations in specific frequency bands coordinates anatomically distributed neuronal processing and communication. Typically, oscillations and synchronization take place concurrently in many distinct frequencies, which serve separate computational roles in cognitive functions. While within-frequency phase synchronization has been studied extensively, less is known about the mechanisms that govern neuronal processing distributed across frequencies and brain regions. Such integration of processing between frequencies could be achieved via cross-frequency coupling (CFC), either by phase-amplitude coupling (PAC) or by n:m-cross-frequency phase synchrony (CFS). So far, studies have mostly focused on local CFC in individual brain regions, whereas the presence and functional organization of CFC between brain areas have remained largely unknown. We posit that inter-areal CFC may be essential for large-scale coordination of neuronal activity and investigate here whether genuine CFC networks are present in human resting-state brain activity.To assess the functional organization of CFC networks, we identified brain-wide CFC networks at meso-scale resolution from stereo-electroencephalography (SEEG) and at macro-scale resolution from source-reconstructed magnetoencephalography (MEG) data. We developed a novel graph-theoretical method to distinguish genuine CFC from spurious CFC that may arise from non-sinusoidal signals ubiquitous in neuronal activity. We show that genuine inter-areal CFC is present in human resting-state activity in both MEG and SEEG data. Both CFS and PAC networks coupled theta and alpha oscillations with higher frequencies in large-scale networks connecting anterior and posterior brain regions. CFS and PAC networks had distinct spectral patterns and opposing distribution of low- and high frequency network hubs, implying that they constitute distinct CFC mechanisms. The strength of CFS networks was also predictive of cognitive performance in a separate neuropsychological assessment. In conclusion, these results provide evidence for inter-areal CFS and PAC being two distinct mechanisms for coupling oscillations across frequencies in large-scale brain networks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rossana Mastrandrea ◽  
Fabrizio Piras ◽  
Andrea Gabrielli ◽  
Nerisa Banaj ◽  
Guido Caldarelli ◽  
...  

AbstractNetwork neuroscience shed some light on the functional and structural modifications occurring to the brain associated with the phenomenology of schizophrenia. In particular, resting-state functional networks have helped our understanding of the illness by highlighting the global and local alterations within the cerebral organization. We investigated the robustness of the brain functional architecture in 44 medicated schizophrenic patients and 40 healthy comparators through an advanced network analysis of resting-state functional magnetic resonance imaging data. The networks in patients showed more resistance to disconnection than in healthy controls, with an evident discrepancy between the two groups in the node degree distribution computed along a percolation process. Despite a substantial similarity of the basal functional organization between the two groups, the expected hierarchy of healthy brains' modular organization is crumbled in schizophrenia, showing a peculiar arrangement of the functional connections, characterized by several topologically equivalent backbones. Thus, the manifold nature of the functional organization’s basal scheme, together with its altered hierarchical modularity, may be crucial in the pathogenesis of schizophrenia. This result fits the disconnection hypothesis that describes schizophrenia as a brain disorder characterized by an abnormal functional integration among brain regions.


2016 ◽  
Vol 44 (4) ◽  
pp. 522-542 ◽  
Author(s):  
Christofer Berglund

After the Rose Revolution, President Saakashvili tried to move away from the exclusionary nationalism of the past, which had poisoned relations between Georgians and their Armenian and Azerbaijani compatriots. His government instead sought to foster an inclusionary nationalism, wherein belonging was contingent upon speaking the state language and all Georgian speakers, irrespective of origin, were to be equals. This article examines this nation-building project from a top-down and bottom-up lens. I first argue that state officials took rigorous steps to signal that Georgian-speaking minorities were part of the national fabric, but failed to abolish religious and historical barriers to their inclusion. I next utilize a large-scale, matched-guise experiment (n= 792) to explore if adolescent Georgians ostracize Georgian-speaking minorities or embrace them as their peers. I find that the upcoming generation of Georgians harbor attitudes in line with Saakashvili's language-centered nationalism, and that current Georgian nationalism therefore is more inclusionary than previous research, or Georgia's tumultuous past, would lead us to believe.


2001 ◽  
Vol 39 (2-3) ◽  
pp. 137-150 ◽  
Author(s):  
S Karakaş ◽  
C Başar-Eroğlu ◽  
Ç Özesmi ◽  
H Kafadar ◽  
Ö.Ü Erzengin
Keyword(s):  
Top Down ◽  

2021 ◽  
Author(s):  
Michele Allegra ◽  
Chiara Favaretto ◽  
Nicholas Metcalf ◽  
Maurizio Corbetta ◽  
Andrea Brovelli

ABSTRACTNeuroimaging and neurological studies suggest that stroke is a brain network syndrome. While causing local ischemia and cell damage at the site of injury, stroke strongly perturbs the functional organization of brain networks at large. Critically, functional connectivity abnormalities parallel both behavioral deficits and functional recovery across different cognitive domains. However, the reasons for such relations remain poorly understood. Here, we tested the hypothesis that alterations in inter-areal communication underlie stroke-related modulations in functional connectivity (FC). To this aim, we used resting-state fMRI and Granger causality analysis to quantify information transfer between brain areas and its alteration in stroke. Two main large-scale anomalies were observed in stroke patients. First, inter-hemispheric information transfer was strongly decreased with respect to healthy controls. Second, information transfer within the affected hemisphere, and from the affected to the intact hemisphere was reduced. Both anomalies were more prominent in resting-state networks related to attention and language, and they were correlated with impaired performance in several behavioral domains. Overall, our results support the hypothesis that stroke perturbs inter-areal communication within and across hemispheres, and suggest novel therapeutic approaches aimed at restoring normal information flow.SIGNIFICANCE STATEMENTA thorough understanding of how stroke perturbs brain function is needed to improve recovery from the severe neurological syndromes affecting stroke patients. Previous resting-state neuroimaging studies suggested that interaction between hemispheres decreases after stroke, while interaction between areas of the same hemisphere increases. Here, we used Granger causality to reconstruct information flows in the brain at rest, and analyze how stroke perturbs them. We showed that stroke causes a global reduction of inter-hemispheric communication, and an imbalance between the intact and the affected hemisphere: information flows within and from the latter are impaired. Our results may inform the design of stimulation therapies to restore the functional balance lost after stroke.


2021 ◽  
Author(s):  
Pavithra Elumalai ◽  
Yasharth Yadav ◽  
Nitin Williams ◽  
Emil Saucan ◽  
Jürgen Jost ◽  
...  

Autism Spectrum Disorder (ASD) is a set of neurodevelopmental disorders that pose a significant global health burden. Measures from graph theory have been used to characterise ASD-related changes in resting-state fMRI functional connectivity networks (FCNs), but recently developed geometry-inspired measures have not been applied so far. In this study, we applied geometry-inspired graph Ricci curvatures to investigate ASD-related changes in resting-state fMRI FCNs. To do this, we applied Forman-Ricci and Ollivier-Ricci curvatures to compare networks of ASD and healthy controls (N = 1112) from the Autism Brain Imaging Data Exchange I (ABIDE-I) dataset. We performed these comparisons at the brain-wide level as well as at the level of individual brain regions, and further, determined the behavioral relevance of region-specific differences with Neurosynth meta-analysis decoding. We found brain-wide ASD-related differences for both Forman-Ricci and Ollivier-Ricci curvatures. For Forman-Ricci curvature, these differences were distributed across 83 of the 200 brain regions studied, and concentrated within the Default Mode, Somatomotor and Ventral Attention Network. Meta-analysis decoding identified the brain regions showing curvature differences as involved in social cognition, memory, language and movement. Notably, comparison with results from previous non-invasive stimulation (TMS/tDCS) experiments revealed that the set of brain regions showing curvature differences overlapped with the set of brain regions whose stimulation resulted in positive cognitive or behavioural outcomes in ASD patients. These results underscore the utility of geometry-inspired graph Ricci curvatures in characterising disease-related changes in ASD, and possibly, other neurodevelopmental disorders.


2021 ◽  
Vol 15 ◽  
Author(s):  
Paolo Finotelli ◽  
Carlo Piccardi ◽  
Edie Miglio ◽  
Paolo Dulio

In this paper, we propose a graphlet-based topological algorithm for the investigation of the brain network at resting state (RS). To this aim, we model the brain as a graph, where (labeled) nodes correspond to specific cerebral areas and links are weighted connections determined by the intensity of the functional magnetic resonance imaging (fMRI). Then, we select a number of working graphlets, namely, connected and non-isomorphic induced subgraphs. We compute, for each labeled node, its Graphlet Degree Vector (GDV), which allows us to associate a GDV matrix to each one of the 133 subjects of the considered sample, reporting how many times each node of the atlas “touches” the independent orbits defined by the graphlet set. We focus on the 56 independent columns (i.e., non-redundant orbits) of the GDV matrices. By aggregating their count all over the 133 subjects and then by sorting each column independently, we obtain a sorted node table, whose top-level entries highlight the nodes (i.e., brain regions) most frequently touching each of the 56 independent graphlet orbits. Then, by pairwise comparing the columns of the sorted node table in the top-k entries for various values of k, we identify sets of nodes that are consistently involved with high frequency in the 56 independent graphlet orbits all over the 133 subjects. It turns out that these sets consist of labeled nodes directly belonging to the default mode network (DMN) or strongly interacting with it at the RS, indicating that graphlet analysis provides a viable tool for the topological characterization of such brain regions. We finally provide a validation of the graphlet approach by testing its power in catching network differences. To this aim, we encode in a Graphlet Correlation Matrix (GCM) the network information associated with each subject then construct a subject-to-subject Graphlet Correlation Distance (GCD) matrix based on the Euclidean distances between all possible pairs of GCM. The analysis of the clusters induced by the GCD matrix shows a clear separation of the subjects in two groups, whose relationship with the subject characteristics is investigated.


2018 ◽  
Author(s):  
Christian D. Márton ◽  
Makoto Fukushima ◽  
Corrie R. Camalier ◽  
Simon R. Schultz ◽  
Bruno B. Averbeck

AbstractPredictive coding is a theoretical framework that provides a functional interpretation of top-down and bottom up interactions in sensory processing. The theory has suggested that specific frequency bands relay bottom-up and top-down information (e.g. “γ up, β down”). But it remains unclear whether this notion generalizes to cross-frequency interactions. Furthermore, most of the evidence so far comes from visual pathways. Here we examined cross-frequency coupling across four sectors of the auditory hierarchy in the macaque. We computed two measures of cross-frequency coupling, phase-amplitude coupling (PAC) and amplitude-amplitude coupling (AAC). Our findings revealed distinct patterns for bottom-up and top-down information processing among cross-frequency interactions. Both top-down and bottom-up made prominent use of low frequencies: low-to-low frequency (θ, α, β) and low frequency-to-high γ couplings were predominant top-down, while low frequency-to-low γ couplings were predominant bottom-up. These patterns were largely preserved across coupling types (PAC and AAC) and across stimulus types (natural and synthetic auditory stimuli), suggesting they are a general feature of information processing in auditory cortex. Moreover, our findings showed that low-frequency PAC alternated between predominantly top-down or bottom-up over time. Altogether, this suggests sensory information need not be propagated along separate frequencies upwards and downwards. Rather, information can be unmixed by having low frequencies couple to distinct frequency ranges in the target region, and by alternating top-down and bottom-up processing over time.1SignificanceThe brain consists of highly interconnected cortical areas, yet the patterns in directional cortical communication are not fully understood, in particular with regards to interactions between different signal components across frequencies. We employed a a unified, computationally advantageous Granger-causal framework to examine bi-directional cross-frequency interactions across four sectors of the auditory cortical hierarchy in macaques. Our findings extend the view of cross-frequency interactions in auditory cortex, suggesting they also play a prominent role in top-down processing. Our findings also suggest information need not be propagated along separate channels up and down the cortical hierarchy, with important implications for theories of information processing in the brain such as predictive coding.


Sign in / Sign up

Export Citation Format

Share Document